
Toolsandtechniquesformodular,portable,
(machinelearning)parameterisations

Jack Atkinson1, Dominic Orchard1,2, Elliott Kasoar1,3, Tom Meltzer1
1) ICCS, University of Cambridge 2) University of Kent 3) STFC

KEY REFERENCES

[1] ICCS. FTorch. https://github.com/Cambridge-ICCS/FTorch, 2022.

[2] Y Qiang Sun, Pedram Hassanzadeh, M Joan Alexander, and Christopher G Kruse. Quantifying 3d gravity wave drag in a library of tropical convection-permitting simulations for data-driven
parameterizations. Journal of Advances in Modeling Earth Systems, 15(5):e2022MS003585, 2023.

[3] Y Qiang Sun, Hamid A Pahlavan, Ashesh Chattopadhyay, Pedram Hassanzadeh, Sandro W Lubis, M Joan Alexander, Edwin Gerber, Aditi Sheshadri, and Yifei Guan. Data imbalance, uncertainty
quantification, and generalization via transfer learning in data-driven parameterizations: Lessons from the emulation of gravity wave momentum transport in waccm. arXiv preprint arXiv:2311.17078,
2023.

[4] Janni Yuval, Paul A O’Gorman, and Chris N Hill. Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at
reduced precision. Geophysical Research Letters, 48(6):e2020GL091363, 2021.

ACKNOWLEDGEMENT AND PARTNERS MORE INFORMATION

Jack Atkinson
Senior Research Software Engineer
Research Software Group
Institute of Computing for Climate Science
University of Cambridge
jwa34@cam.ac.uk

Current State
Current implementations of parameterisations in numerical models
have common attributes that form a barrier to interoperability:

• Use of custom data structures

– Will not exist in other models
– May contain unnecessary variables/data

• Use of global variables

– No reference from another model
– Hard to track down within other models
– Generally a bad idea in software design

• Use of functions from elsewhere in the model

– now need to be ported alongside the parameterisation

Numerical

Model

Machine Learning considerations
Machine-learnt (ML) parameterisations provide potential
for higher performance and/or accuracy by training using
observational data or high-resolution model output.

However, implementation of such parameterisations brings
additional challenges beyond those discussed to the left.

ConvectionRadiation

MicrophysicsPrecipitation

CryosphereBiosphere

T, q

q

T, p, q

T, q

u, T,

T,

• Grid restrictions
ML parameterisations are bound to the grid
on which they are trained.
Users will now need to perform a grid inter-
polation as part of the interface.

• Hybrid architectures
It is desirable to run ML on GPU, whilst
most numerical models are CPU-based so
offloading will be required.
Efficient data transfer and GPU usage will
require MPI Gather.

• Language interoperation
Most ML models are trained in Python
frameworks e.g. PyTorch whilst many nu-
merical models use Fortran or similar com-
piled languages.
Joining the two is not straightforward.

Structure
We propose that ML parameterisations adopt a
nested structure:
• A pure neural net (NN) core

– to allow easy substitution of re-
trained/different architecture nets

• A physics wrapper
– to pre/post-process variables for the NN
– to enforce physical constraints

e.g. mass and energy conservation

NN

Physics Layer

Interface

Numerical Model

FTorch Coupling Library [1]

To tackle some of these issues we have developed FTorch,
a library for coupling PyTorch models to Fortran code.
Key features include:

• A "pythonic" Fortran interface for users
• Multi-GPU support using Torch offloading
• Efficient, no-copy data transfer
• No requirement for Python at runtime

FTorch is available on GitHub:

https://github.com/Cambridge-ICCS/FTorch

Motivation
Climate models rely on parameterisations for subgrid processes.

ConvectionRadiation

MicrophysicsPrecipitation

CryosphereBiosphere

T, q

q

T, p, q

T, q

u, T,

T,

These are often published as standalone papers, documented and described with physical equations.
If authors made the code implementation of their parameterisations available this would help with:

• re-use and deployment in a variety of models.
• reproducibility
• collaboration and model/parameterisation improvements

In reality implementations of parameterisations are tightly coupled (in terms of code/software) to any
model they are deployed in. This presents barriers to interoperability, re-use, and scientific progress.

Proposed structure/rules
Our proposed solution to the above issues centres around parameterisations being implemented with
a multi-layer structure:

M

O

D

E

L

P

A

R

A

M.

Glue

Layer

Rules for authors
• Do not assume any data structures at the inter-

face to the numerical model
– Take all variables as single inputs.
– These could be used to create data struc-

tures inside the parameterisation.
• Do not assume any global variables

– all variables used in the parameterisa-
tion must be explicitly passed across the
parameterisation-model interface.

• Provide a clear API
– specify all input and output variables
– specify units for all inputs and outputs
– specify appropriate ranges for inputs and

outputs e.g. resolution
• Publish code

– Version controlled, ideally open-source
– Provide tests for users/developers

Rules for users
• Provide clear API/documentation for the model

variables, their units, and any data structures
• Coupling of models should be done through a

Glue code/interface layer:
– Used to join the two defined interfaces

(parameterisation and model).
– Conversion between model and parameteri-

sation variables.
– Conversion between model and parameteri-

sation units.

Custom

Data

Structures Numerical

Model

Global

Variables

Model

Functions

u v T p

state

c

Examples and applications
We have applied these approaches to implement ML parameterisations in CAM (the Community At-
mosphere Model) for:

• Deep convection and precipitation, trained using the high-resolution (LES) model SAM (System
for Atmospheric Modeling) [4] re-deployed in CAM.

• Atmospheric gravity waves, trained using the high-resolution WRF (Weather Research and Fore-
casting) Model [2] re-deployed in CAM.

Both of these have been run on multiple High Performance Computing (HPC) systems.
FTorch has been implemented as part of the CIME framework to facilitate use by wider users of CESM
(the Community Earth System Model).

Vision
• Parameterisations should strive to be model-agnostic i.e. interoperable
• This can be aided by sensible software design.
• Along with code authors should provide a clear API for variables in and out.
• Re-deployment to a new model then requires end users to write a model interface layer
• ML parameterisations bring additional challenges.

We propose adopting a NN core wrapped by a physics layer and model interface later.
• We have developed FTorch to facilitate PyTorch-Fortran coupling and integrated it into CESM.

