

Current State

Current implementations of parameterisations in numerical models have common attributes that form a barrier to interoperability:

- Use of custom data structures
 - Will not exist in other models
 - May contain unnecessary variables/data
- Use of global variables
 - No reference from another model
 - Hard to track down within other models
 - Generally a bad idea in software design
- Use of functions from elsewhere in the model
 - now need to be ported alongside the parameterisation

Proposed structure/rules

Our proposed solution to the above issues centres around parameterisations being implemented with a multi-layer structure:

Rules for authors

- Do not assume any data structures at the interface to the numerical model
 - Take all variables as single inputs.
 - These could be used to create data structures *inside* the parameterisation.
- Do not assume any global variables
 - all variables used in the parameterisation must be explicitly passed across the parameterisation-model interface.
- Provide a clear API
 - specify all input and output variables
 - specify units for all inputs and outputs
 - specify appropriate ranges for inputs and outputs e.g. resolution
- Publish code
 - Version controlled, ideally open-source
 - Provide tests for users/developers

Rules for users

- Glue code/interface layer:
- sation variables.
- sation units.

KEY REFERENCES

- [1] ICCS. FTorch. https://github.com/Cambridge-ICCS/FTorch, 2022.
- [2] Y Qiang Sun, Pedram Hassanzadeh, M Joan Alexander, and Christopher G Kruse. Quantifying 3d gravity wave drag in a library of tropical convection-permitting simulations for data-driven parameterizations. Journal of Advances in Modeling Earth Systems, 15(5):e2022MS003585, 2023.
- [3] Y Qiang Sun, Hamid A Pahlavan, Ashesh Chattopadhyay, Pedram Hassanzadeh, Sandro W Lubis, M Joan Alexander, Edwin Gerber, Aditi Sheshadri, and Yifei Guan. Data imbalance, uncertainty guantification, and generalization via transfer learning in data-driven parameterizations: Lessons from the emulation of gravity wave momentum transport in waccm. arXiv preprint arXiv:2311.17078,
- [4] Janni Yuval, Paul A O'Gorman, and Chris N Hill. Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision. Geophysical Research Letters. 48(6):e2020GL091363. 2021

Tools and techniques for modular, portable, (machinelearning) parameterisations

Jack Atkinson¹, Dominic Orchard^{1,2}, Elliott Kasoar^{1,3}, Tom Meltzer¹ 1) ICCS, University of Cambridge 2) University of Kent 3) STFC

- This can be aided by sensible software design.
- ML parameterisations bring additional challenges.

ACKNOWLEDGEMENT AND PARTNERS

SCHMIDT SCIENCES

arning	considerations
provide y by trainin del output.	potential gusing Biosphere T, q u, T, p, q, \dots T, q T, q $Cryosphere$ T, q u, T, p, q, \dots T, q t, p, q
neterisation issed to the	s brings Radiation Convection
the grid V r rid inter-	 Structure Ne propose that ML parameterisations adopt a nested structure: A pure neural net (NN) core to allow easy substitution of retrained/different architecture nets A physics wrapper
ased so	 to pre/post-process variables for the NN to enforce physical constraints e.g. mass and energy conservation
Python nany nu- ilar com- rd.	Numerical Model Interface Physics Layer NN
developed <i>F</i> Fortran code Sers Dading	FTorch is available on GitHub: e.
	https://github.com/Cambridge-ICCS/FTorch

Examples and applications

We have applied these approaches to implement ML parameterisations in CAM (the Community At-

- Deep convection and precipitation, trained using the high-resolution (LES) model SAM (System
- Atmospheric gravity waves, trained using the high-resolution WRF (Weather Research and Fore-
- Both of these have been run on multiple High Performance Computing (HPC) systems.
- FTorch has been implemented as part of the CIME framework to facilitate use by wider users of CESM

