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Introduction

Aeolian ripples formation is influenced by various factors, including surface conditions, boundary layer
forces, and dominant sand transport mechanisms. When the grain size distribution (GSD) is bimodal,

taller structures, known as megaripples, emerge. The bimodal distribution facilitates the simultaneous

operation of two transport mechanisms: saltation for fine grains and reptation for coarse grains.

This leads to a spatial distribution of grain sizes within the bedform, with smaller grains accumulating

at the base and larger grains at the crest, forming an armoring layer. studies indicate that the sorting

~

mechanism is a fundamental factor in understanding the formation of

megaripples and that the
armoring layer plays a crucial role in aeolian sand transport, aeolian erosion, and development

dynamics of megaripples.

Methods
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Fig3. Armoring layer evolution over time under different wind
velocities. The armoring layer comprises a distinct accumulation
fields were also analyzed. of coarse grains above finer grains, demonstrated in selected
images by circular regions in red and blue, respectively.
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Fig2. The set of the experiment in the BGU stationary wind tunnel.
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