
Characterising Edge States:

Measures on chaotic non-attracting invariant sets
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For attractors, there is the concept of physical measures
which quantify the probability of a trajectory to be at a cer-
tain location on the attractor during a given time interval.
A similar measure on saddles and repellers (both are non-
attracting invariant sets) would be desirable as it contains
information about their geometry, and about possible long-
living chaotic transients, which helps quantifying the level
of uncertainty of the long-term behaviour of the system.
Chaotic transients can occur in reality, e.g. in turbulent
flows, or even in simple models of the earth’s climate.
In this work, we explore an invariant probability measure on
non-attracting invariant sets that under certain conditions
is a candidate for a physical measure on these sets. We
explore its properties and analogous measures on the in-
variant set’s stable and unstable set.

Importance of measures on chaotic saddles in climate sci-
ence
• A physical measure on an attractor tells us which states are
likely to be realised and which are not. For example in climate
science, such a measure might tell us how probable a specific
weather condition is.

• A system can be in a state on or close to a chaotic saddle for a
long time, and a physical measure on this saddle would char-
acterise the dynamics of the transient dynamics on or close to
the saddle. Such a measure also contains information on the
geometric complexity and fractal dimension of the saddle. In
the special case of the saddle being an edge state (an attractor
of the system restricted to the basin boundary) this also con-
tains information about the dimension of the basin boundary
and thus, about uncertainty close to it.

Short summary:
• We introduce a novel notion of an invariant probability measure
on chaotic non-attracting invariant sets in terms of Lebesgue
measure.

• We explain how to approximate the measures by ”uniform
sprinkling” according to the background measure, and we use
the central limit theorem to find the convergence rate of the
approximation.

• We show a numerical example where we approximate the
measure on a saddle and on its stable and unstable set.

• We use a formula from [1] to compute the Information dimen-
sion of the saddle from its finite-time Lyapunov exponents. We
find it to be very close to the box-counting dimension of the
support of the previously computed measure on the saddle.

• We show that the measures on the stable and unstable set
defined following [1] make sense if the system is Lebesgue
invariant.

Definitions

Inspired by Sweet and Ott [1], we start by considering a region
R that contains the non-attracting invariant set Λ, but no other
invariant set.
We define the region of trajectories that remained within R up
until n iterations as

R(n) = {x ∈ R : fk(x) ∈ R, k = 0, ..., n} (1)

=

n⋂
k=0

f−k(R). (2)

Note that R(n+1) ⊂ R(n) is a nested sequence.
We further define the set of trajectories that have been in the
open set C ⊂ R after m iterations and which also remained within
R up until n iterations as

R(m,n,C) = {x ∈ R : fk(x) ∈ R, k = 0, ..., n & fm(x) ∈ C} (3)

= R(n) ∩ f−m(C) (4)

with m ≤ n. Now, we can define the characteristic escape time τ
from the region R as:

τ−1 = − lim
n→∞

1

n
ln

(
l(R(n))

l(R)

)
(5)

And we define the pre-measure µ on Λ for any open set C ⊂ R
by

µ(C) = lim
n→∞

l(R(m(n),n,C))

l(R(n))
, (6)

where m(n) is called a mediating sequence and is such that
0 ≪ m(n) ≪ n as n → ∞. We call Λ a compliant maximal non-
attracting invariant set if the limit in eq. (6) exists and if it is inde-
pendent of the mediating sequence m(n). Using Caratheodory’s
extension theorem, we can extend the pre-measure on the ring
of open sets to a measure on all Borel sets. Note that µ(C) can
be proven to be a probability measure supported on Λ.

Approximation through uniform sprinkling

To numerically approximate this measure µ(C), we show that it
is equivalent to the method of Sweet and Ott on approximating
Lebesgue measure by uniform sprinkling.
We define the random variable:

x = {x(i)}∞i=1 (7)

with x(i) ∈ R chosen uniformly and independently with respect
to l.

Define the product measure LR(n)

LR(n)({c(i)}∞i=1) =
∞∏
i=1

ℓR(n)(c(i)) (8)

with ℓR(n)(C) = ℓ(R(n)∩C)/ℓ(R(n)) and {c(i)}∞i=1 is a sequence of
open sets. Note that LR(n)(RN) = 1 which means that LR(n) is a
probability measure, and

ℓR(n)(R
(m,n,C)) =

ℓ(R(m,n,C))

ℓ(R(n))
. (9)

Now define

N(x,m, n, C, k) = #{i : 1 ≤ i ≤ k and x(i) ∈ R(m,n,C)}, (10)

i.e. the number of points in the sequence x(i), ..., x(k) that remain
in R(n) up to the nth iterate and that are in C after m iterates.
Theorem 1 The measure µ in (10) can be computed as

µ(C) = lim
n→∞

lim
k→∞

N(x,m(n), n, C, k)

k
(11)

as long as the limits on both sides exist. In this is the case the
right-hand side converges for LR(n)-almost all choices of x to the
left-hand side.
Proof: The law of large numbers implies that

lim
k→∞

N(x,m, n, C, k)

k
= ℓR(n)(R

(m,n,C)). (12)

and in particular, the left hand side converges for LR(n)-a.a. se-
quences x if the limit. Hence we have this equality for a full LR(n)-
measure set of x. Applying this for each n and intersecting the
allowable full measure sets (which still has full measure) gives
the required result, as long as the limit in (11) converges. In this
sense, the notion of uniform sprinkling in [1] gives an accurate
estimate of µ for a.a. choices of x.
For fixed m and n, one can use the Central Limit Theorem for
equation (12) and the convergence rate is 1√

k
to get estimates

of how many sample trajectories are needed to estimate µ accu-
rately.

Numerical Example

We illustrate our findings using a simple skew-product map as an
example:

xn+1 = 4.2xn exp(−x2n)

yn+1 = yn + 0.4 sin(yn) + 0.4(x2n − 1.4)

with {xn}, {yn} ∈ R and n ∈ N.
The system shows chaotic behaviour in the x-direction and is
multistable in the y-direction.

Plot of the setup of the system.

The following figure shows the numerical approximation of for-
mula (6) with m chosen such that we get a measure on the sad-
dle, on its stable or on its unstable set.

Approximation of: top: the invariant probability measure on the
saddle, middle: a measure on the stable set, bottom: a mea-
sure on the unstable set

Fractal Dimension

1. Computing the box-counting dimension of the saddle gives
≈ 1.04.

2. Using a formula from [1] to compute the dimension of the sad-
dle from the Lyapunov exponents gives ≈ 1.04.

Measure on the stable and unstable set

Setting m(n) = 0 gives a measure on the stable set, and setting
m(n) = n gives a measure on the unstable set. However, these
measures are not invariant probability measures.
Additionally, there is a problem with this definition: We would
expect that under time inversion, the stable set of the saddle be-
comes the new unstable set and vice-versa. For the measures
on these sets, we would require an analogous behaviour. We can
show that this expected relationship between the measure on the
stable and unstable set holds if the dynamics are ℓ-invariant. If
the system is not ℓ-invariant, the desired relation might be vio-
lated as the following example shows.
We define the skewed Bakers Map as:

S(x, y, z) =

{
(xq , ys, z + 0.4 sin(z) + 0.4(x2 − 1.4)) , x ≤ q

(x−q
1−q ,

1−s
y + s, z + 0.4 sin(z) + 0.4(x2 − 1.4)) , q < x

with x ∈ [0, 1]. The measures on the stable and unstable set are
shown in the next figure, and we can see that the mass of the
measures is distributed differently in the case of the system that
is not ℓ-invariant.

first row: Measure on the stable set in forward time,
second row: Measure on the unstable set in backward time,
first column: q = s = 1/2, thus the system is ℓ-invariant, sec-
ond column: q = 0.7, s = 0.51, thus the system is not ℓ-invariant.

Continuous Systems

In continuous systems, we can define a measure on a non-
attracting invariant set in a similar way: We define the two sets
that we considered before for maps analogously:

R(t) = {x ∈ R : φ(τ, x) ∈ R, τ ∈ [0, t]}

R(m,t,C) = {x ∈ R : φ(τ, x) ∈ R, τ ∈ [0, t] & φ(m,x) ∈ C}
= R(t) ∩ φ(−m,C)

with m ≤ t. Now, we can first define the pre-measure µ on open
sets C ⊂ R by

µ(C) = lim
t→∞

l(R(m(t),t,C))

l(R(t))
, (13)

and extend it to all Borel sets using Caratheodory’s extension
theorem as before. The mediating time m(t) is again such that
0 ≪ m(t) ≪ t as t → ∞.

Open Questions

1. On the (un)stable set, we can define an invariant measure that
has infinite measure but not an invariant probability measure.
How can we use this in applications?

2. The formula from [1] for the Lyapunov dimension seems to
work only for typical cases, what can we do in atypical cases?

3. How can we compute and use the defined measures in higher
dimensions to be useful for applications like modelling climate
tipping points?

4. In the case of continuous time, under certain conditions, we
can probably use algorithms like Edge-Tracking or PIM-triple
to sample the measure. What are these conditions and what
are the convergence properties?
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