

Salinomycin and lasalocid adsorption/desorption by different soils and bioadsorbents from Galicia (NW Spain)

<u>Cela-Dablanca, R¹., Barreiro, A¹., Míguez-González, A¹., Núñez-Delgado, A¹.,</u> Fernández-Sanjurjo, M.J¹., Álvarez-Rodríguez, E¹.

¹Soil Science and Agricultural Chemistry. Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain

EGU24

#726083

INTRODUCTION

Salinomycin and lasalocid are polyether ionophore antibiotics commonly used in animal production as anticoccodia

MATERIAL AND METHODS

CS 7,97 10,49 18,08 0,85 53,00 28,00 19,00 63,24 55,18 4,97 0,70 2,34 0,04	SOILS													
ES 4,80 9,78 16,87 0,67 67,28 19,86 12,86 6,59 0,05 0,00 0,12 0,12 6,29 CS 7,97 10,49 18,08 0,85 53,00 28,00 19,00 63,24 55,18 4,97 0,70 2,34 0,04	Soil	рН H ₂ O	CO	MO	N	Area	Limo	Arxila	eCEC	Ca	Mg	Na	K	Al
CS 7,97 10,49 18,08 0,85 53,00 28,00 19,00 63,24 55,18 4,97 0,70 2,34 0,04			%							cmol _c kg ⁻¹				
	ES	4,80	9,78	16,87	0,67	67,28	19,86	12,86	6,59	0,05	0,00	0,12	0,12	6,29
GS 4,71 5,22 9,00 0,34 67,58 17,86 14,56 8,03 1,37 0,78 0,23 0,49 5,15	CS	7,97	10,49	18,08	0,85	53,00	28,00	19,00	63,24	55,18	4,97	0,70	2,34	0,04
	GS	4,71	5,22	9,00	0,34	67,58	17,86	14,56	8,03	1,37	0,78	0,23	0,49	5,15

BIOADSORBENTS

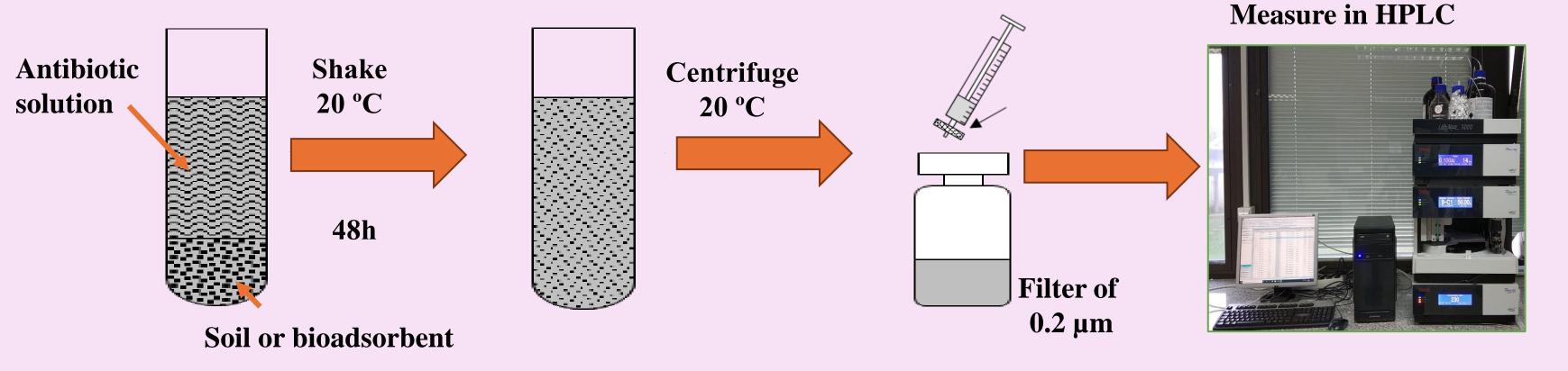
Parameter	Unity	Oak ash	Pine bark	Mussel shell	Olive residue
С	%	13,23	48,70	11,43	46,19
N	%	0,22	0,08	0,21	0,89
C/N		60,14	608,75	55,65	52,08

Eucalyptus soil (ES)

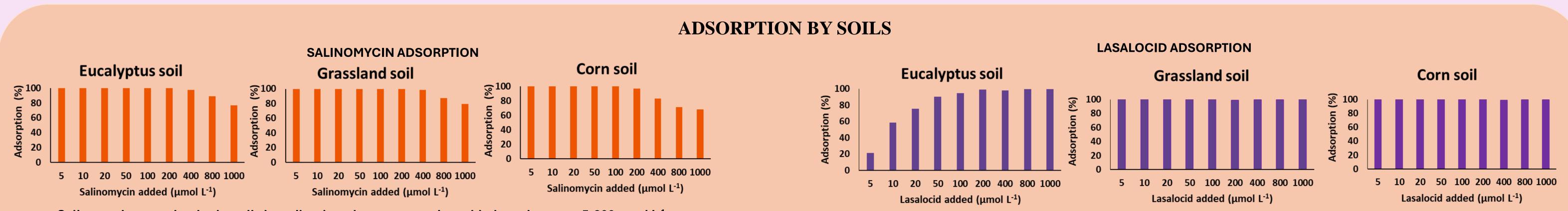
Mussel shell	Olive residue	Pine bark	Oak ash
	and the second	and the second	

These antibiotics are partially metabolised and excreted

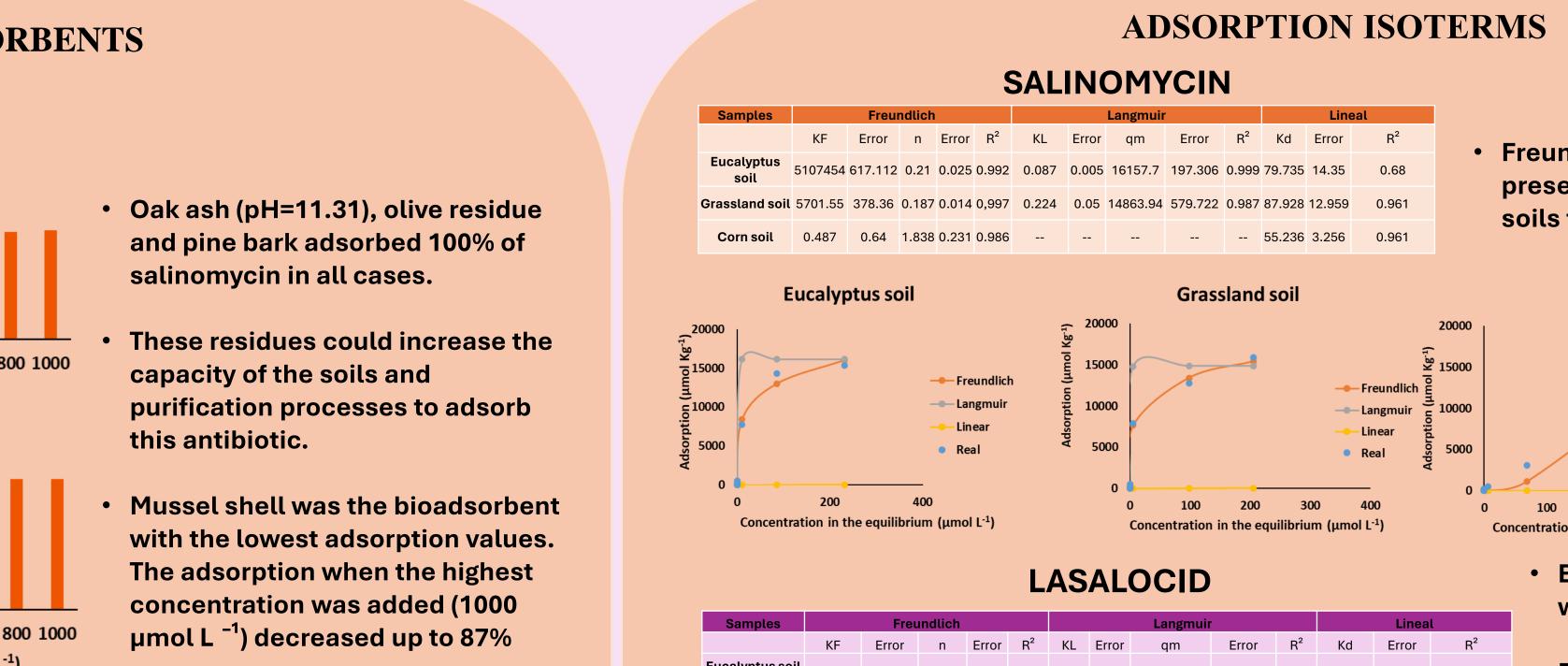
These drugs enter the environment by direct deposition of urine and faeces on soil, or when manure is applied to soils as fertilizer.



The objective of this work was to investigate the adsorption/desorption capacity of salinomycin and lasalocid of three soils from Galicia (NW Spain) with different properties, and also that of the four residues previously indicated, which could be added to soils to improve the adsorption capacity of these antibiotics.


pH H ₂ O		11,31	3,99	9,39	5,95	
Ca _e	cmol _c kg ⁻¹	95,00	5,38	24,75	10,45	
Mg _e	cmol _c kg ⁻¹	3,26	2,70	0,72	2,86	1000
Na _e	cmol _c kg ⁻¹	12,17	0,46	4,37	0,1	En ete
K _e	cmol _c kg ⁻¹	250,65	4,60	0,38	3,46	- Marine
Al _e	cmol _c kg ⁻¹	0,07	1,78	0,03	0,09	
eCEC	cmol _c kg ⁻¹	361,15	14,92	30,25	16,96	1
Sat Al	%	0,02	11,93	0,10	0,53	
P Olsen	mg kg ⁻¹	462,83	70,45	54,17	73,55	

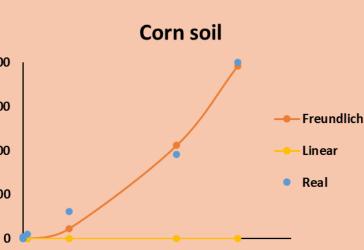
ADSORPTION. Batch experiments



RESULTS AND DISCUSSION

- Salinomycin was adsorbed totally by soils when the concentration added was between 5-200 µmol L⁻¹
- When the concentration added increased (up to 1000 µmol L⁻¹), adsorption decreased up to 68%.
- Corn soil, with a high pH value (7,97), presented slightly lower adsorption values.

• All soils adsorbed 100% of lasalocid when the highest concentrations were added

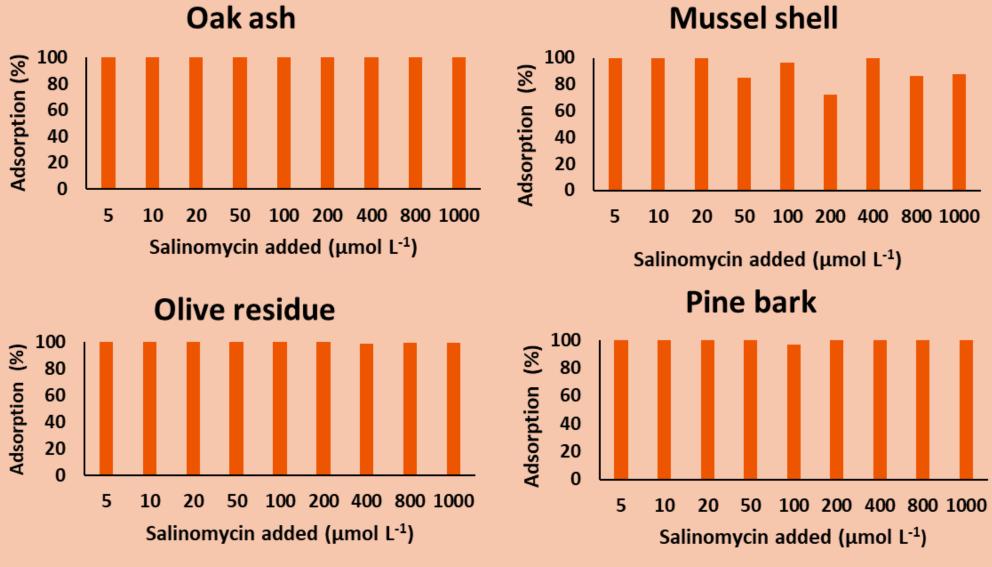


Grassland soil

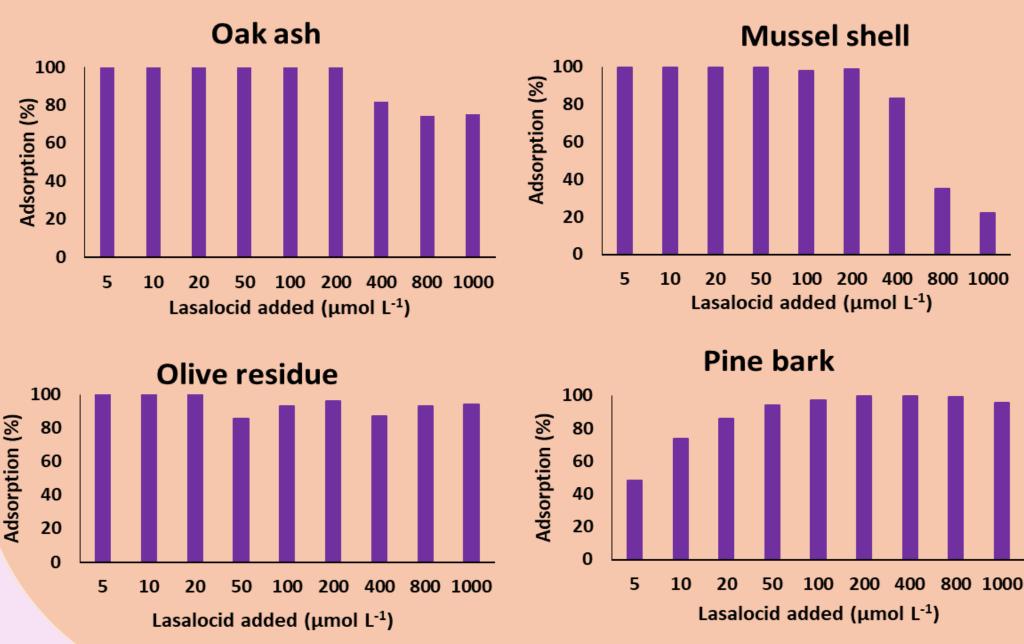
0.151

0.696

Freundlich is the model that present the best adjustment in soils for both antibiotics

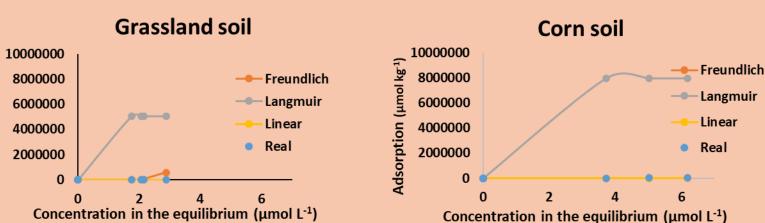

Concentration in the equilibrium (µmol L⁻¹)

0.753


- Eucalyptus soil did not adjust well with any model
- For salinomycin, bioadsorbents did not present a good adjustment for

ADSORPTION BY BIOADSORBENTS

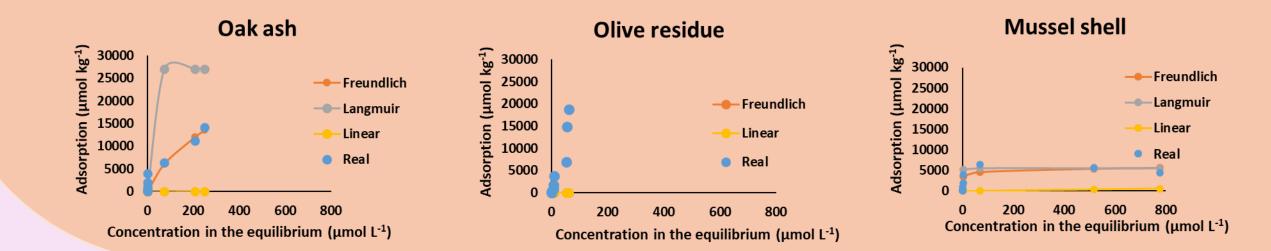
SALINOMYCIN


LASALOCID

- The adsorption of lasalocid by bioadsorbents was 100% when the concentration added was between (5-200 µmol L ⁻¹)
- When the concentration added was the highest (1000 μ mol L ⁻¹) the adsorption decreased up to:
 - 75% by oak ash • 94% by olive residue 95% by pine bark • 22% by mussel shell

1.6640.1480.99400.0577986332 Corn soil

14.322 6.017 0.982 0.001 1.058 5051631,00 7.62E+09 0.753 3337.57 500.365



Samples	Freundlich					Langmuir					Lineal		
	KF	Error	n	Error	R ²	KL	Error	qm	Error	R^2	Kd	Error	R²
Oak ash	393.47	497.847	0.642	0.238	0.908	0.004	0.004	27085.2	16513.4	0.906	57.592	5.123	0.88
Mussel shell	3296.31	717.325	0.079	0.041	0.852	0.647	0.299	5531.11	478.565	0.906			
Olive residue	0	0.001	4.5	1.312	0.918						249.864	25.435	0.86
Pine bark													

any model

• In the case of lasalocid, Freundlich presented a good adjustment for oak ash and olive residue.

 Langmuir model obtained a R²>0.9 for oak ash and mussel shell, but presented high errors, invalidating the adjustment

DESORPTION

The desorption was lower tan 7% for both antibiotics (salinomycin and lasalocid) in soils and bioadsorbents for the added concentrations.

Acknowledgements: This work was supported by the Spanish "Agencia Estatal de Investigación" (State Investigation Agency) [grant number PID2021-122920OB-C21].

To Campus Terra (University of Santiago de Compostela) for the grant awarded to Raquel Cela-Dablanca.

CONCLUSION

Adsorption

Soils adsorbed 100% of lasalocid, however, salinomycin adsorption was lower. To retain salinomycin, the use of bioadsorbent would be interesting, specially, pine bark, olive residue and ash. In the case of lasalocid, the best bioadsorbents were olive residue and pine bark