A comparative analysis of global models for riverine plastic input to the ocean

Daniel González-Fernández¹, Caspar T.J. Roebroek^{2,3}, Charlotte Laufkötter^{4,5}, Tim H.M. van Emmerik⁶, and Andrés Cózar¹

¹Department of Biology, University Marine Research Institute INMAR, University of Cádiz and European University of the Seas SEA-EU, Puerto Real, Spain ²Directorate D-Sustainable Resources-Bio-Economy Unit, European Commission Joint Research Centre, Ispra, Italy, ³Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland, ⁴Climate and Environmental Physics, University of Bern, Bern, Switzerland Oeschger, ⁵Centre for Climate Change Research, University of Bern, Bern, Switzerland, ⁶Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, the Netherlands

daniel.gonzalez@uca.es 🗙 @LitRivus

INTRODUCTION

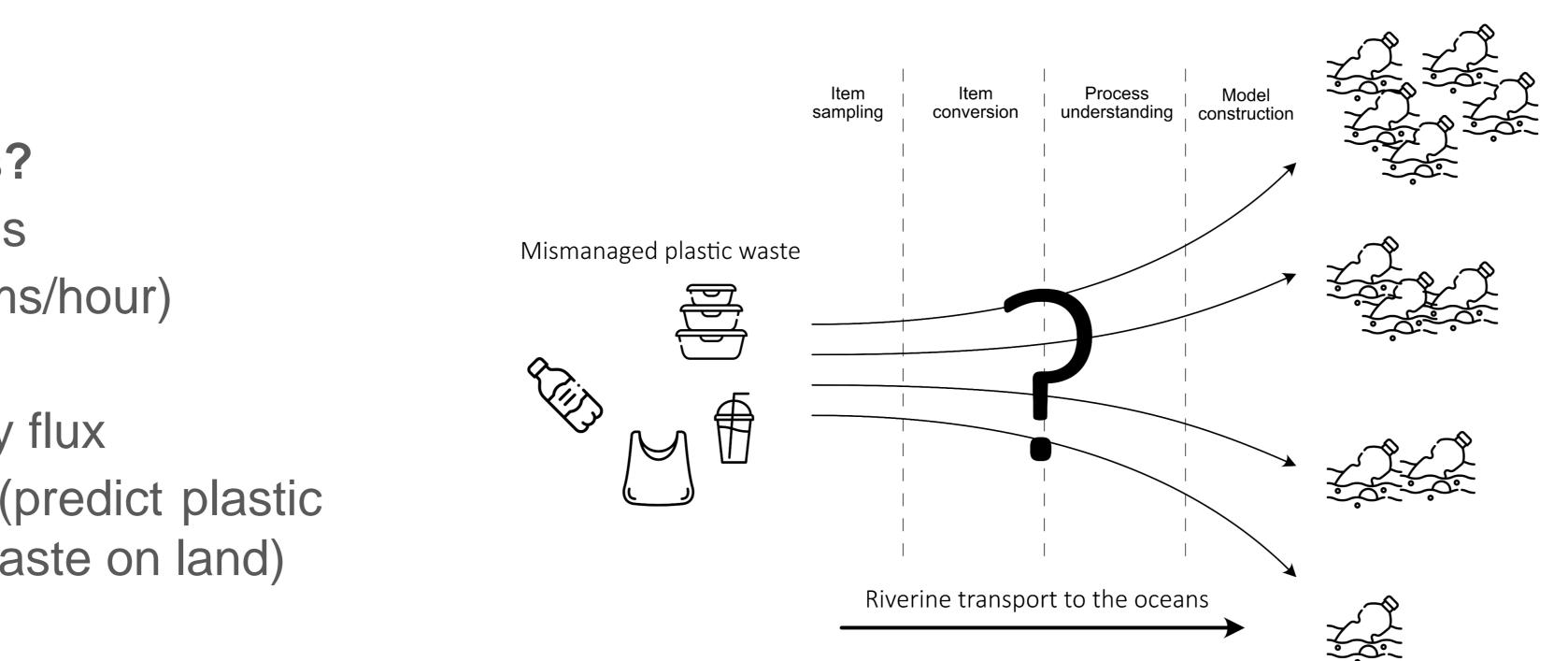
How do we estimate plastic transport by rivers?

- Microplastics sampling
- Macroplastics observations
- Convert items to mass
- Use statistics/discharge to extrapolate to a yearly flux

- Use regression model to get a global estimate (predict plastic flux using river discharge and theoretical plastic waste on land)

RESULTS AND DISCUSSION

Global modelling frameworks and estimates of riverine plastic input to the ocean.


		Experimer	ital data in th	ne model	Model framework			
Geograhical coverage	Modelling studies	Number of rivers	Number of samples	Type of samples	Number of basins	Average mass per microplastic (g)	Average mass per macroplastic (g)	Annual loading (MT yr ⁻¹)
Global scale	Lebreton et al. 2017	13	30	mostly microplastics	40,760	0.003	0.17	1,150,000 - 2,410,000
	Schmidt et al. 2017	57	240	mostly microplastics	1,494	0.0018	0.22	470,000 - 2,750,000
	Mai et al. 2020	24	80	mostly microplastics	1,518	0.00017	0.119	56,000 - 265,000
	Weiss et al. 2021	75	96	microplastics	9,998	0.00023	n.a.	6,100
	Meijer et al. 2021	16	52	macroplastics	31,904	n.a.	2 - 19	800,000 - 2,700,000
n.a. (not appl	icable)							

González Fernández et al., 2023.

Roebroek et al., 2022. The quest for the missing plastics: large uncertainties in river plastic export into the sea. Environmental Pollution. https://doi.org/10.1016/j.envpol.2022.119948

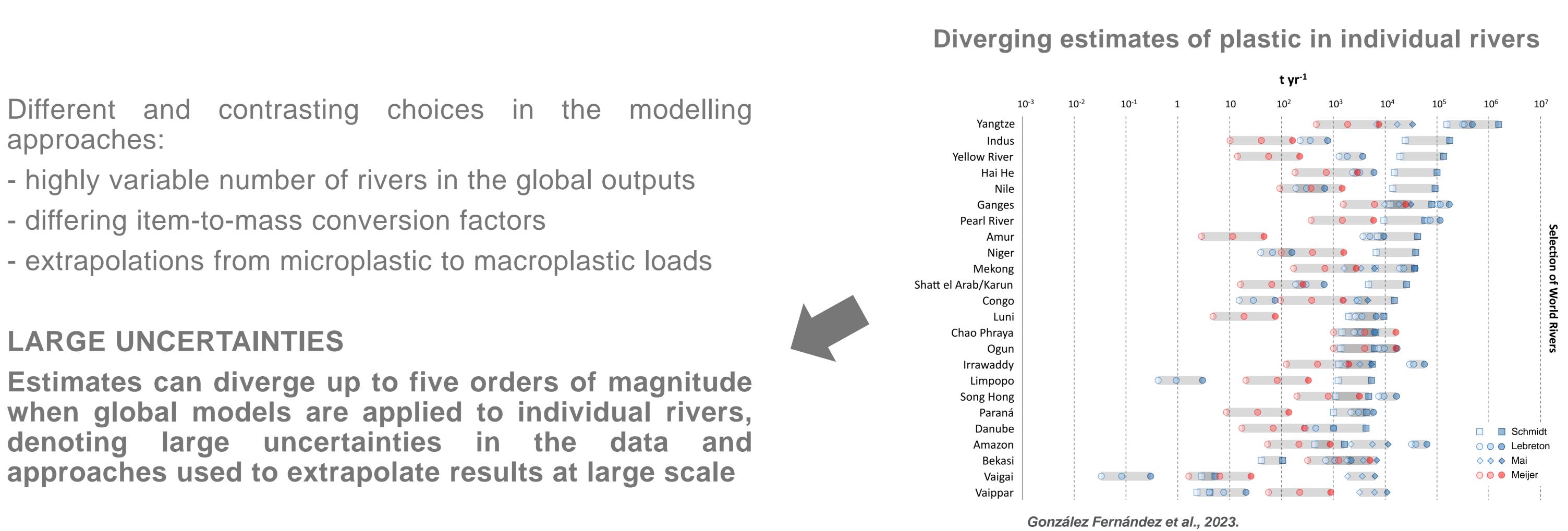
González Fernández et al., 2023. Diverging estimates of river plastic input to the ocean. Nature Reviews Earth and Environment. https://doi.org/10.1038/s43017-023-00448-3

- Concentrations
- Flux (e.g., items/hour)

» Regression models are not well constrained

approaches:

- differing item-to-mass conversion factors


LARGE UNCERTAINTIES

How do we reduce uncertainties in riverine plastic input to the ocean?

- Harmonized monitoring comparability
- mass estimates
- plastic flux variability

Better estimates in individual rivers »**better constrained** models for global assessments

www.inspire-europe.org / Inspire Europe (LinkedIn) / Inspire Europe (Facebook) / inspire_eu (Instagram) / INSPIRE_EUROPE (X)

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them. This project has received funding under grant agreement No 101112879 (INSPIRE).

methods data improve _

- Representative data (across plastic size spectrum) - better

- Long-term monitoring (frequent sampling) - characterize

