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PhD Project Overview | | |

One of the unresolved issues in studying induced seismicity in
Enhanced Geothermal Systems (EGS) is the occurrence of
delayed induced seismicity and the underlying processes

driving this phenomenon. THM Coupled model
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Results | | |
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Enhanced Geothermal Systems | (®]|>

Enhanced Geothermal Systems (EGS) accesses heat sources deeper in the
Earth's crust, making geothermal energy viable in regions lacking active tectonic
activity and broaden geothermal energy production to diverse geographical areas
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Induced Seismicity | (] >

Induced seismicity emerges as an adverse outcome of EGS, arising from the necessity to establish interconnected fractures
for fluid circulations. By studying previous seismic events, it can be observed geothermal exploitation caused low number of
seismic events with high magnitude which can be a sign of less control of induced seismicity in this field
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Delayed or Post-Injection Induced Seismicity <« |#] [p

In the case of studying induced seismicity in geothermal energy, one of the open questions is post-injection or delayed
induced seismicity and the effective processes behind this phenomenon. Finding an answer to this question becomes critical
when post-injection seismic events, in many cases, are observed to be more severe the ones recorded during injection.

Expected reason: delayed in pressure, temperature front earthquake magnitude jumps and its delay of occurrence
after shut in or bleed of in different geothermal projects
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DC7-PhD: Dynamic fracturing in a THM framework: Upscaling
applications to geo-energy production and induced seismicity

This research project aims to improve the control over
induced seismicity events during deep geothermal
energy exploitation by enhancing our understanding
of pressure and temperature diffusivity, and their
interactions with existing stress fields in fractured
rock. To achieve this, robust fully coupled thermo-
hydro-mechanical models will be developed that
include dynamic fracturing processes. By applying the
model to various project configurations and using
statistical analysis, we can identify the combinations
of processes that result in severe induced seismicity

/ Thermo-Hydraulic (TH)
Model

¢ Develop a coupled TH model of
a geothermal system

" (TH+M) Model

¢ Expand the model to include
mechanical processes, creating
a robust coupled THM model of
EGS formations

Model Validation

e Validate the model using
existing laboratory data or
analytical solutions

v

Fracture Incorporation

e Find efficient methods for
incorporating fractures into TH
model and define parameters
which represent network
properties (figure 2&3)

Parametric Study

e Study the impact of hydraulic,
thermal and properties, on
pressure and temperature
diffusion

Seismic Event Analysis

e Investigate the delay and
severity of induced seismic
events under various initial
stress and boundary conditions




Convection vs Conduction <4 [T |

Heat transfer in porous media involves two main mechanisms: convection and conduction. While conduction dominates
in low-porosity rocks, fractures enhance fluid movement, making convection more significant. Balancing these
mechanisms and determining the optimal Peclet number is crucial for the geothermal energy industry to extract
adequate volume of water at the desired temperature, which is essential for smooth operation of geothermal systems
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Studying Parameters

Fracture
Property

Percolation Number

Assumption:
¢ Random fracture orientations
¢ Random fracture location
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Sensitivity Analysis | |2 >
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Percolation Number- Fracture Connectivity < |#]

In order to assess the accuracy of the percolation number in distinguishing
connected from disconnected fractures, we generate various fracture networks
with differing percolation numbers. Subsequently, we compare the pressure
distribution and average thermal face velocity among these fracture networks.
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Thermal Efficiency Dependency

Thermal efficiency dependency on thermal
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Peclet Number Dependency

Peclet number dependency on thermal
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Thermal Efficiency Sensitivity < 2] |
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Discussion <« & >
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Conclusion <« |2 >

The percolation number effectively discerns the connectivity or
disconnection of the fracture network in our numerical model.

While the percolation number is valuable, it alone cannot comprehensively characterize
the behavior of a connected fracture network; additional parameters, such as fracture
network density, are necessary to assess other fracture properties beyond connectivity.

In cases where effective parameters in convection change within the model, the percolation number
governs the sensitivity of thermal efficiency. However, the fracture network with the highest percolation

number (or highest thermal efficiency sensitivity) may not necessarily be the most thermally efficient.
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