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GeoCryoAI
Summary of research and what application was investigated?

Problem
Reconciliation of Data Dichotomy with 
Artificial Intelligence

Application
Permafrost Carbon Feedback

Here is what I found
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Permafrost Carbon Feedback
How is it a challenging problem?

This document has been reviewed and determined not to contain export controlled technical data. 3

§ Big Data: Operating in a space of diametrically opposing issues to store, process, and analyze information over space and 
time, i.e., dearth of field data or an over-abundance of data acquired from remote sensing and modeling resources.

§ Remote Sensing: The ability to quantify or infer the magnitude, rate, and extent of the permafrost carbon feedback (i.e., 
thaw variability, carbon release) with high confidence across space and time is restricted with remote sensing platforms 
(Miner et al., 2021; Gay, et al., 2023; Esau et al., 2023).

§ Modeling: Subroutines and interactions governing earth system models (ESMs) vary widely, with many overlooking the 
dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et al., 2017; Randall et al., 2007).
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Study Domain and Data Dichotomy

The study domain consisted of Alaska (1.723M 
km2), covering 26.92% of the NASA ABoVE 
Domain (6.4M km2) and 11.88% of the Arctic 
landscape (14.5M km2).

After transformation, dimensionality reduction, 
trend removal, time-delayed supervision, and 
regression analyses, model training initializes 
2.51M parameters and high dimensional, time-
variant multimodal hyperspatiospectral datasets:

§ 13.1M in situ measurements
§ 8.06B airborne observations
§ 7.48B model outputs
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Multicollinearity
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Data Dichotomy
What are the different modalities?
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Eight Mile Lake AVng_242A-242Z_FL194 AVIRIS-NG: (RGB; 44.914 km), ang20170706t183519_rdn_v2p9 Eight Mile Lake, Denali North UAVSAR (L-band, polSAR RPI/inSAR VV/VV), 2017 July-September ∆) denalN_09115_17066-008_17100-
003_0094d_s01_L090_01; 29396, 4811, 4.99m, 17-Jun-2017 22:29:35-22:41:16 UTC-19-Sep-2017 21:30:17-21:41:14 UTC, 160-km length of 
processing data (Linear Power, Phase Radians)
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Data Dichotomy
What are the different modalities?
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How is scale reconciled?
Spatial Disaggregation
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GeoCryoAI
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GeoCryoAI
The engine under the hood

The GeoCryoAI architecture is constructed with a process-constrained ensemble learning hybridized framework of stacked convolutionally-layered long 
short-term memory-encoded recurrent neural networks optimized with a hyperparameter dictionary and a Bayesian Optimization search algorithm.
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Results
Cost Functions and Performance
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Time series analyses of ALT, CO2, and CH4 in situ measurements constrained to the temporal coverage of 
CO2 and CH4 flux variability across Alaska, 2006-2019 (top). Loss functions and predictions derived from 
GeoCryoAI simulations of in situ thaw depth and carbon release during teacher forcing (middle) and 
multimodal thaw depth and carbon release data (bottom).
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Active Layer Thickness 
(cm), 1969-2022

Carbon Dioxide 
(µmolCO2m-2s-1), 2003-2021

Methane               
(nmolCH4m-2s-1), 2011-2022

Naïve Persistence Model
Test RMSE 1.997 1.906 0.884

GeoCryoAI | Teacher Forcing
Test RMSE 1.327 0.697 0.715

Fractional Reduction RMSE -33.55% -63.43% -19.12%

GeoCryoAI | Multimodality
Test MAE 0.708 0.09 0.591
Test MSE 1.014 0.045 0.481

Test MAPE 0.578 0.156 0.51
Test RMSE 1.007 0.213 0.694

Fractional Reduction RMSE -49.57%, -24.11% -88.82%,-69.44% -21.49%, -2.94%
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So What?
What are the contributions and limitations?

Contributions
§ GeoCryoAI introduces ecological memory components of a dynamical system by effectively learning the subtle 

complexities among these covariates while demonstrating an aptitude for emulating permafrost degradation and carbon 
flux dynamics with increasing precision and minimal loss.

§ These efforts provide a novel multidisciplinary approach to better understanding the Arctic ecosystem by constraining 
spatiotemporal complexities and refining traditional model parameterization efficiencies with state-of-the-art developments 
in HPC and AI.

Limitations
§ The model presented minor prediction errors and exposure biases that compounded iteratively, and the teacher forcing 

approach simplified the loss landscape in exchange for computational efficiency.
§ The vanishing and exploding gradients presented multiple challenges throughout training, including the risk of overfitting 

due to model complexity (i.e., dampened with dropout generalization).
§ Additional uncertainty may originate from landscape-level dynamics and regional lagged effects in response to increased 

warming.

This document has been reviewed and determined not to contain export controlled technical data. 12

Gay et al., 2024. In Revision

Gay et al., 2023

17 Apr 24



jpl.nasa.gov

European Geosciences Union | General Assembly 2024

This document has been reviewed and determined not to contain export controlled technical data. 13

Gay et al., 2024. In Revision

17 Apr 24

Does GeoCryoAI work and is it useful?
Summary and Significance

Problem: Reconciliation of Data Dichotomy with Artificial Intelligence
Application: Permafrost Carbon Feedback

GeoCryoAI ingests a huge amount of data (~15.7B measurements and observations) to learn, simulate, and 
forecast primary constituents of the permafrost carbon feedback with prognostic and retrospective 
capabilities.

With more gravitation towards implementing AI/ML approaches to better understand high-latitude dynamics 
recently (e.g., Brovkin, Nitze, Grosse, Pastick), this study underscores the significance of thaw-induced 
climate change exacerbated by the PCF and highlights the importance of resolving the spatiotemporal 
variability of the PCF as a sensitive harbinger of change.
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Ongoing Research and Steps Forward
What is next?
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Sentinel-5P, OCO-2, OCO-3, Sentinel-6, PREFIRE, AWS, MAIA, NISAR, CRISTAL, Harmony (Credit: eoportal, NASA JPL, NASA, ESSP, ESA)
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Ongoing research will further elucidate on the PCF and delayed subsurface phenomena by:

§ Enrichment | Expanding the flexibility, efficiency, and knowledge base of the model with supercomputing and AI in support 
of current and future missions to minimize loss and improve performance (e.g., AVIRIS-3, UAVSAR, PREFIRE, NISAR, 
CRISTAL; SBG TIR)

§ Development | Generating Circumarctic zero-curtain space-time maps to distribute to the State of Alaska, First Nations, 
and the USG as a JPL-led first-order effort to engage leadership and identify cross-sector risks at local, state, regional, 
and global levels (e.g., critical infrastructure damage, disturbance tipping points, cultural vulnerabilities).
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