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GeoCryoAl

Summary of research and what application was investigated?
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Permafrost Carbon Feedback
How is it a challenging problem?

» Big Data: Operating in a space of diametrically opposing issues to store, process, and analyze information over space and
time, i.e., of field data or an of data acquired from remote sensing and modeling resources.

= Remote Sensing: The ability to quantify or infer the magnitude, rate, and extent of the permafrost carbon feedback (i.e.,
thaw variability, carbon release) with high confidence across space and time is with remote sensing platforms
(Miner et al., 2021; Gay, et al., 2023; Esau et al., 2023).

= Modeling: Subroutines and interactions governing earth system models (ESMs) widely, with many the
dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et al., 2017; Randall et al., 2007).
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Study Domain and Data Dichotomy

The study domain consisted of Alaska (1.723M
km?), covering of the NASA ABoVE
Domain (6.4M km?) and of the Arctic
landscape (14.5M km?).

After transformation, dimensionality reduction,

trend removal, time-delayed supervision, and

regression analyses, model training initializes
and high dimensional, time-

variant multimodal hyperspatiospectral datasets:
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Data Dichotomy

What are the different modalities?
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Data Dichotomy

What are the different modalities?
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How is scale reconciled?
Spatial Disaggregation

SIBBORK-TTE Model | Monthly Thaw Depth (cm), July 2017 SIBBORK-TTE Model | Monthly Thaw Depth (cm), July 2017
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GeoCryoAl
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GeoCryoAl
The engine under the hood

Data Structure
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The GeoCryoAl architecture is constructed with a process-constrained ensemble learning hybridized framework of stacked convolutionally-layered long
short-term memory-encoded optimized with a hyperparameter dictionary and a
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Results
Cost Functions and Performance

Time series analyses of ALT, CO,, and CHy, in situ measurements constrained to the temporal coverage of
CO; and CH; flux variability across Alaska, 2006-2019 (top). Loss functions and predictions derived from

GeoCryoAl simulations of in situ thaw depth and carbon release during teacher forcing ( ) and
multimodal thaw depth and carbon release data ( )-

Active Layer Thickness Carbon Dioxide Methane

(cm), 1969-2022 (umoICO.m=2s1), 2003-2021  (nmoICH4m2s"), 2011-2022

Naive Persistence Model
Test RMSE

GeoCryoAl | Teacher Forcing o (I (1] ]
Test RMSE 1.327 0.697 0.715 S 1
Fractional Reduction RMSE -33.55% -63.43% -19.12%

GeoCryoAl | Multimodality

Test MAE 0.708 0.09 0.591
Test MSE 1.014 0.045 0.481
Test MAPE 0.578 0.156 0.51
Test RMSE
Fractional Reduction RMSE -49.57%, -24.11% -88.82%,-69.44% -21.49%, -2.94%
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So What?

What are the contributions and limitations?

= GeoCryoAl introduces ecological memory components of a dynamical system by effectively the subtle
complexities among these covariates while demonstrating an aptitude for permafrost degradation and carbon
flux dynamics with increasing precision and minimal loss.

= These efforts provide a novel multidisciplinary approach to better understanding the Arctic ecosystem by constraining
spatiotemporal complexities and traditional model parameterization efficiencies with state-of-the-art developments
in HPC and Al.

= The model presented minor prediction errors and exposure biases that compounded iteratively, and the teacher forcing
approach simplified the loss landscape in exchange for computational efficiency.

= The vanishing and exploding gradients presented multiple challenges throughout training, including the
(i.e., dampened with dropout generalization).

= Additional uncertainty may originate from in response to increased
warming.
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Summary and Slgnlflbance

Does GeoCryoAl work and is it useful?

- [T R (MR
Problem: Reconciliation of Data Dichotomy with Artificial Intelligence
Application: Permafrost Carbon Feedback

\\ ingests a huge amount of data (~15.7B measurements and observations) to learn, simulate, and
"\, forecast primary constituents of the permafrost carbon feedback with prognostic and retrospective
§ capabilities.

_ 4
=.. With more gravitation towards implementing Al/ML approaches to better understand high-latitude dynamics ’
—— recently (e.g., Brovkin, Nitze, Grosse, Pastick), this study underscores the significance of thaw-induced

climate change exacerbated by the PCF and highlights the importance of resolving the spatiotemporal
varlablllty of the PCF as a sensmve harblnger of change.
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Ongoing Research and Steps Forward
What is next?

Ongoing research will further elucidate on the PCF and delayed subsurface phenomena by:

= Enrichment | of the model with supercomputing and Al in support
of current and future missions to (e.g., AVIRIS-3, UAVSAR, PREFIRE, NISAR,
CRISTAL; SBG TIR)

= Development | to distribute to the State of Alaska, First Nations,
and the USG as a JPL-led first-order effort to at local, state, regional,

and global levels (e.g., critical infrastructure damage, disturbance tipping points, cultural vulnerabilities).

% « ‘./g,";'

Sentinel-5P, OCO-2, OCO-3, Sentinel-6, PREFIRE, AWS, MAIA, NISAR, CRISTAL, Harmony (Credit: eoportal, NASA JPL, NASA, ESSP, ESA)
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Datasets, code, and notebooks are distributed in a

Positive feedbacks between permafrost degradation and the release of soil carbon into the

atmosphere impact land-atmosphere intera

climate change. The widespread distribution of thawing permafrost is

disrupt the global carbon cycle, and accelerate
sing a cascade of

geophysical and biochemical disturbances with global impacts. Currently, few earth system models
account for permafrost carbon feedback (PCE) mechanisms. This research study integrates

artificial intelligence (AI) tools and information d

ved from field-

and boreal landscapes in Alaska. We identify and interpret the permafrost carbon cycling links and

feedback sensitivities with GeoCryoAl, a hybridized multimodal deep le:

stacked convolutionally layered, memory-encoded recurrent neural networks (NN). Th
framework integrates in-sifu measurements and flux tower observations for teacher forcing and
model training. Preliminary experiments to quantify, validate, and forecast permafrost degradation

Alaska demonstrate the fi

y of this data-driven architecture. More

gical memory and effectively learn: riate dynamics while

n aptitude to simulate and

n [1969-20:

t PCE dy — rer thickness (ALT),
ision and minimal loss (i.s

mol 1 (2003 1]; CHMS

0715 nmolCH; m~2s~! [2011-2022]). ALT variability i a sensitive harbinger of change, a unique
signal characterizing the PCE, and our model is the first characterization of these dynami

space and time.

1. Introduction

1.1. Permafrost carbon feedback

Frozen soil and carbon-rich per:

nearly 14 million square kilometers of the global ter-
restrial surface, with total soil organic carbon stock
estimates near 1307 170 PgC (Hugelius et al
Actoss the Circumarctic, quantifying the persistent
irregularities and impacts attributed to permafrost
deg

itional state of permafrost and spatiotemporal ALT
heterogeneity drives abrupt changes emerging from

The Author(s). Publshe by IOP Publising L

rapid, nonlinear carbon-climate fecdback mechan-
isms. These processes are correlated with several
biotic and abiotic factors throughout the tundra and
boreal, including tundra shrub encroachment, boreal
forest migration, caribou migration patterns, topo-
graphy, precipitation, solar radiation, land surface

temperature b ¢ hy c flow (Lloyd
et al 2003, Evans et al 2020, Aguirre et al 2021,
Joly et al 20

the permafrost-carbon feedback

catalyst that amplifies localized warm

disrupts carbon cycle partitioning, and destabilizes

ning (DL) architecture of
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Key Points:

We quantify and fc st the perma 2 feedback and reconcile the multimodal
data dichotomy with artificial intelligenc

GeoCryoAl is a hybridized ensemble learning framework composed of stacked
convolutional layers and memory-encoded recurrent neural network:

This approach provides refinements to traditional model inefficiencies and resolves
spatiotemporal disparities in permafrost research.

erms:
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