G. S. Voelker¹, Y.-H. Kim², G. Bölöni³, G. Zängl³, and U. Achatz¹

The effect of transient lateral internal gravity wave propagation on the resolved atmosphere in ICON/MS-GWaM

GOETHE

Supplementary material

¹Goethe University Frankfurt, Germany ²Seoul National University, Seoul, South Korea ªDeutscher Wetterdienst (DWD), Offenbach am Main, Germany

April 16, 2024

a python toy code

https://github.com/g-voelker/python-msgwam/tree/dev

the ICON model

https://gitlab.dkrz.de/icon/icon-model

the ICON/MS-GWaM submodule

https://github.com/DataWaveProject/msgwam

Mathematical model formulation

1. scale height separation

 $H_p/H_{\theta} = \mathcal{O}(\epsilon^{\alpha})$

1. scale height separation	$H_{p}/H_{ heta}=\mathcal{O}(\epsilon^{lpha})$
2. small Rossby number	$1 \gg Ro = \epsilon$
quasi-geostrophic regime	
hydrostatic scaling	$H_w = \epsilon L_w$
stratification and rotation	$f = \epsilon^{5-\alpha} N$
3. perturbation scale separation ϵ	$(X, Y, Z, T) = \epsilon(x, y, z, t)$

4. perturbation expansion in small parameter (not shown)

non-dimensional compressible Euler equations
 multiscale theory with (X, T) = \epsilon(x, t), \epsilon = Ro

$$\mathbf{v} = \sum_{j=0}^{\infty} \epsilon^{j} \mathbf{V}_{0}^{(j)} + \Re \sum_{\beta} \sum_{n=1}^{\infty} \epsilon^{n} V_{\beta}^{(n)} e^{\phi_{\beta}/\epsilon}$$
(1)

$$\theta = \sum_{j=0}^{\alpha} \epsilon^{j} \bar{\Theta}^{(j)}(Z) + \epsilon^{\alpha+1} \sum_{j=0}^{\infty} \epsilon^{j} \Theta_{0}^{(j)} + \epsilon^{\alpha+1} \Re \sum_{\beta} \sum_{n=1}^{\infty} \epsilon^{n} \Theta_{\beta}^{(n)} e^{\phi_{\beta}/\epsilon}$$
(2)

$$\pi = \sum_{j=0}^{\alpha} \epsilon^{j} \bar{\Pi}^{(j)}(Z) + \epsilon^{\alpha+1} \sum_{j=0}^{\infty} \epsilon^{j} \Pi_{0}^{(j)} + \epsilon^{\alpha+2} \Re \sum_{\beta} \sum_{n=1}^{\infty} \epsilon^{n} \Pi_{\beta}^{(n)} e^{\phi_{\beta}/\epsilon}$$
(3)

Field = reference + mean flow + superimposing waves β
 wave properties ω_β = −∂_Tφ_β, k_β = ∇_Xφ_β

Achatz, Ribstein, et al. 2017

 $\dot{\xi} = (\partial_t + \boldsymbol{c}_g \cdot \nabla_r)\xi$ dispersion relation

$$\omega = \Omega(\mathbf{X}, T, \mathbf{k}) = \mathbf{k} \cdot \mathbf{U}_0^{(0)}(\mathbf{X}, T) \pm \sqrt{\frac{f^2 m^2 + N^2 (k^2 + l^2)}{k^2 + l^2 + m^2}}$$
(4)

eikonal equations

$$(\partial_{T} + \boldsymbol{c}_{g} \cdot \nabla_{\boldsymbol{X}})\boldsymbol{k} = \dot{\boldsymbol{k}} = -\nabla_{\boldsymbol{X}}\Omega \qquad \boldsymbol{c}_{g} = \nabla_{\boldsymbol{k}}\Omega \qquad (5)$$

Polarization relations (omitted)
Wave action conservation (no TRI)
$$\mathcal{N} = \mathcal{N}(\mathbf{X}, T, \mathbf{k})$$

$$0 = \partial_T \mathcal{N} + \nabla_{\mathbf{X}} \cdot (\mathbf{c}_g \mathcal{N}) + \nabla_{\mathbf{k}} \cdot (\dot{\mathbf{k}} \mathcal{N}) + S$$
(6)

$$0 = \nabla_{\boldsymbol{X}} \cdot \boldsymbol{c}_{g} + \nabla_{\boldsymbol{k}} \cdot \dot{\boldsymbol{k}}$$
(7)

Grimshaw 1972; Grimshaw 1974; Muraschko et al. 2015; Achatz, Ribstein, et al. 2017

 $\dot{\xi} = (\partial_t + \boldsymbol{c}_g \cdot \nabla_r) \xi$

 $\dot{r} = c_{gr}$

$$\dot{\lambda} = \frac{c_{g\lambda}}{r\cos\phi} \qquad \qquad \dot{\phi} = \frac{c_{g\phi}}{r}$$

 $\dot{\lambda} = \frac{c_{g\lambda}}{2}$

changes in wavenumber

changes in position

$$\dot{k_{\lambda}} = -\frac{1}{r\cos\phi} \left(\mathbf{k} \cdot \partial_{\lambda} \mathbf{U} + \frac{|\mathbf{k}_{h}|^{2} \partial_{\lambda} \mathbf{N}^{2}}{2\hat{\omega} |\mathbf{k}|^{2}} \right) \qquad -\frac{k_{\lambda}}{r} c_{gr} + \frac{k_{\lambda} \tan\phi}{r} c_{g\phi}$$
$$\dot{k_{\phi}} = -\frac{1}{r} \left(\mathbf{k} \cdot \partial_{\phi} \mathbf{U} + \frac{|\mathbf{k}_{h}|^{2} \partial_{\phi} \mathbf{N}^{2} + k_{r}^{2} \partial_{\phi} f^{2}}{2\hat{\omega} |\mathbf{k}|^{2}} \right) \qquad -\frac{k_{\phi}}{r} c_{gr} - \frac{k_{\lambda} \tan\phi}{r} c_{g\lambda}$$
$$\dot{k_{r}} = -\left(\mathbf{k} \cdot \partial_{r} \mathbf{U} + \frac{|\mathbf{k}_{h}|^{2} \partial_{r} \mathbf{N}^{2}}{2\hat{\omega} |\mathbf{k}|^{2}} \right) \qquad +\frac{k_{\lambda}}{r} c_{g\lambda} + \frac{k_{\phi}}{r} c_{g\phi}$$

wave action conservation

$$0 = \partial_t \mathcal{N} + \boldsymbol{c}_g \cdot \nabla_{\boldsymbol{r}} \mathcal{N} + \dot{\boldsymbol{k}} \cdot \nabla_{\boldsymbol{k}} \mathcal{N} + S$$

- relax assumption of geostrophic, horizontal, and hydrostatic leading order mean-flow
- direct flux approach

$$D_t \theta + N^2 w = -\nabla_h \cdot \overline{u'\theta'} \tag{8}$$

$$D_t \boldsymbol{u} + f \boldsymbol{e}_z \times \boldsymbol{u} = -c_p \bar{\theta} \nabla_h \pi - \frac{1}{\bar{\rho}} \nabla \cdot (\bar{\rho} \overline{\boldsymbol{u}' \boldsymbol{v}'}) + \frac{f}{g} \boldsymbol{e}_z \times \overline{\boldsymbol{u}' b'}$$
(9)

entropy-flux convergence, momentum-flux convergence, elastic term

for details see Achatz, Ribstein, et al. 2017; Wei et al. 2019

$$\bar{\rho}\overline{u'u'} = \mathcal{A}\left(kc_{gx} - f^2 \frac{kc_{gx} + lc_{gy}}{f^2 - \hat{\omega}^2}\right) \qquad \bar{\rho}\overline{v'u'} = lc_{gx}\mathcal{A}$$
(10)
$$\bar{\rho}\overline{u'v'} = kc_{gy}\mathcal{A} \qquad \bar{\rho}\overline{v'v'} = \mathcal{A}\left(lc_{gy} - f^2 \frac{kc_{gx} + lc_{gy}}{f^2 - \hat{\omega}^2}\right)$$
(11)
$$\bar{\rho}\overline{u'w'} = kc_{gz}\mathcal{A}\left(\frac{f^2}{f^2 - \hat{\omega}^2}\right) \qquad \bar{\rho}\overline{v'w'} = lc_{gz}\mathcal{A}\left(\frac{f^2}{f^2 - \hat{\omega}^2}\right)$$
(12)

$$\bar{\rho}\overline{u'\theta} = \frac{\bar{\theta}fN^4k_h^2}{g\hat{\omega}K^2m(\hat{\omega}^2 - f^2)}I\mathcal{A} \qquad \bar{\rho}\overline{v'\theta} = -\frac{\bar{\theta}fN^4k_h^2}{g\hat{\omega}K^2m(\hat{\omega}^2 - f^2)}k\mathcal{A}$$
(13)
$$\frac{f}{g}\overline{u'b'} = \frac{f^2N^4k_h^2}{\bar{\rho}g\hat{\omega}k^2m(\hat{\omega}^2 - f^2)}I\mathcal{A} \qquad \frac{f}{g}\overline{v'b'} = -\frac{f^2N^4k_h^2}{\bar{\rho}g\hat{\omega}k^2m(\hat{\omega}^2 - f^2)}k\mathcal{A}$$
(14)

wave action conservation (no TRI) $\dot{\xi} = (\partial_t + c_g \cdot \nabla_r)\xi$ $0 = \partial_T \mathcal{A}_\beta + \nabla_X (c_{g,\beta} \mathcal{A}_\beta)$ (14)

Wave action conservation in phase space

wave action conservation (no TRI) $\dot{\xi} = (\partial_t + c_g \cdot \nabla_r)\xi$ $0 = \partial_T \mathcal{A}_\beta + \nabla_{\mathbf{X}} (c_{g,\beta} \mathcal{A}_\beta)$ (14)

wave action in phase space

$$\mathcal{A}_{\beta} = \int_{\mathbb{R}^3} \mathcal{N}(\boldsymbol{X}, T, \boldsymbol{k}) \delta(\boldsymbol{k} - \boldsymbol{k}_{\beta}) d\boldsymbol{k} \qquad \boldsymbol{k}_{\beta} = \boldsymbol{k}_{\beta}(\boldsymbol{X}, T) \qquad (15)$$

wave action conservation (no TRI) $\dot{\xi} = (\partial_t + c_g \cdot \nabla_r)\xi$ $0 = \partial_T \mathcal{A}_\beta + \nabla_{\mathbf{X}} (\mathbf{c}_{g,\beta} \mathcal{A}_\beta)$ (14)

wave action in phase space

$$\mathcal{A}_{\beta} = \int_{\mathbb{R}^3} \mathcal{N}(\boldsymbol{X}, T, \boldsymbol{k}) \delta(\boldsymbol{k} - \boldsymbol{k}_{\beta}) d\boldsymbol{k} \qquad \boldsymbol{k}_{\beta} = \boldsymbol{k}_{\beta}(\boldsymbol{X}, T) \qquad (15)$$

• we then find for $\mathcal{N}(\boldsymbol{X}, T, \boldsymbol{k})$

$$0 = \partial_{T} \mathcal{N} + \nabla_{\boldsymbol{X}} \cdot (\boldsymbol{c}_{g}, \mathcal{N}) + \nabla_{\boldsymbol{k}} \cdot (\dot{\boldsymbol{k}} \mathcal{N})$$
(16)

$$0 = \nabla_{\boldsymbol{X}} \cdot \boldsymbol{c}_{\boldsymbol{g}} + \nabla_{\boldsymbol{k}} \cdot \dot{\boldsymbol{k}}$$
(17)

phase space volume is conserved

Implementation of the coupled Lagrangian model

A Lagrangian phase space discretization

freely after Fig. 3 of Muraschko et al. 2015

• mean \rightarrow wave: interpolation

$$N_{ray} = N_n + rac{N_{n+1} - N_n}{z_{n+1} - z_n}(z_{ray} - z_n)$$

extended version of Fig. 4 of Muraschko et al. 2015

• mean \rightarrow wave: interpolation

$$N_{ray} = N_n + rac{N_{n+1} - N_n}{z_{n+1} - z_n}(z_{ray} - z_n)$$

► wave → mean: integration and projection

$$D_t oldsymbol{U} \propto -rac{1}{\overline{
ho}}
abla \cdot \int\limits_{\mathbb{R}^3} (\hat{oldsymbol{c}}_g oldsymbol{k} \mathcal{N}) doldsymbol{k}$$

- Eulerian dynamical core
- Lagrangian wave model
- two-way coupling
- massively parallelized

Comparing momentum flux distribution: 1D vs. 3D

Zonal mean zonal winds and temperatures

Zonal mean zonal winds and temperatures

(km)

altitude

altitude (km)

Zonal mean zonal winds and temperatures

Emmert et al. 2022

1D

3D

Meridional momentum flux distribution in Hindley et al. 2020

refraction redistributes wave action dissipation

The (still) missing wave drag at 60°S

Wave drag in CCMI-1 models near 60°S

1D

3D

redistribution of non-orographic waves

1D

3D

modified wind and SSO wave propagation

21 / 32

1D

3D

3D propagation of non-orographic waves alone does not solve it

Lateral propagation and IGW intermittency

(PMF, Dec., z=20km)

22 / 32

(statistics for 50-65°S)

Simulating the QBO with MS-GWaM (details)

Year

z=24km

Year

Notes on the model performance

MPI barrier

computation

Towards a community-available model

+ convection + ice microphysics + turbulence (planned)

MS-GWaM in ICON - From deep integration to a modular framework

+ convection + ice microphysics + turbulence (planned)

Important references

References I

- Achatz, U., B. Ribstein, F. Senf, and R. Klein (2017). "The Interaction between Synoptic-Scale Balanced Flow and a Finite-Amplitude Mesoscale Wave Field throughout All Atmospheric Layers: Weak and Moderately Strong Stratification". *Quarterly Journal of the Royal Meteorological Society* 143.702, pp. 342–361. DOI: 10.1002/gj.2926.
- Achatz, U., Y.-H. Kim, and G. S. Voelker (2023). *Multi-Scale Dynamics of the Interaction Between Waves and Mean Flows: From Nonlinear WKB Theory to Gravity-Wave Parameterizations in Weather and Climate Models*. DOI: 10.48550/arXiv.2310.07334. Journal of Mathematical Physics, accepted: arXiv:2310.07334.
- Achatz, U., R. Klein, and F. Senf (2010). "Gravity Waves, Scale Asymptotics and the Pseudo-Incompressible Equations". *Journal of Fluid Mechanics* 663, pp. 120–147. DOI: 10.1017/S0022112010003411.
- Bölöni, G., Y.-H. Kim, S. Borchert, and U. Achatz (2021). "Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions". *Journal of the Atmospheric Sciences* 78.4, pp. 1317–1338. DOI: 10.1175/JAS-D-20-0065.1.
- Drob, D. P. et al. (2015). "An Update to the Horizontal Wind Model (HWM): The Quiet Time Thermosphere". *Earth and Space Science* 2.7, pp. 301–319. DOI: 10.1002/2014EA000089.
- Emmert, J. T. et al. (2022). "NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS". Journal of Geophysical Research: Space Physics 127.10. DOI: 10.1029/2022JA030896.
- Grimshaw, R. (1972). "Nonlinear Internal Gravity Waves in a Slowly Varying Medium". *Journal of Fluid Mechanics* 54.2, pp. 193–207. DOI: 10.1017/S002211207200631.
- (1974). "Internal Gravity Waves in a Slowly Varying, Dissipative Medium". *Geophysical Fluid Dynamics* 6.2, pp. 131–148. DOI: 10.1080/03091927409365792.

References II

- Hasha, A., O. Bühler, and J. Scinocca (2008). "Gravity Wave Refraction by Three-Dimensionally Varying Winds and the Global Transport of Angular Momentum". *Journal of the Atmospheric Sciences* 65, pp. 2892–2906. DOI: 10.1175/2007JAS2561.1.
- Hindley, N. P., C. J. Wright, L. Hoffmann, T. Moffat-Griffin, and N. J. Mitchell (2020). "An 18-Year Climatology of Directional Stratospheric Gravity Wave Momentum Flux From 3-D Satellite Observations". *Geophysical Research Letters* 47.22. DOI: 10.1029/2020GL089557.
- Holt, L. A., C. M. Brabec, and M. J. Alexander (2023). "Exploiting High-Density Zonal-Sampling of HIRDLS Profiles Near 60°S to Investigate Missing Drag in Chemistry-Climate Models". *Journal* of Geophysical Research: Atmospheres 128.8, e2022[D037398. DOI: 10.1029/2022JD037398.
- Kim, Y. H., G. Bölöni, S. Borchert, H. Y. Chun, and U. Achatz (2021). "Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources". *Journal of the Atmospheric Sciences* 78.4, pp. 1339–1357. DOI: 10.1175/JAS-D-20-0066.1.
- Kim, Y.-H., G. S. Voelker, G. Bölöni, G. Zängl, and U. Achatz (2024). "Crucial Role of Obliquely Propagating Gravity Waves in the Quasi-Biennial Oscillation Dynamics". *Atmospheric Chemistry* and Physics 24.5, pp. 3297–3308. DOI: 10.5194/acp-24-3297-2024.
- Lindzen, R. S. (1981). "Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown". Journal of Geophysical Research 86.C10, pp. 9707–9714. DOI: 10.1029/jc086ic10p09707.
- Muraschko, J., M. D. Fruman, U. Achatz, S. Hickel, and Y. Toledo (2015). "On the Application of Wentzel-Kramer-Brillouin Theory for the Simulation of the Weakly Nonlinear Dynamics of Gravity Waves". *Quarterly Journal of the Royal Meteorological Society* 141.688, pp. 676–697. DOI: 10.1002/qj.2381.

Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova (2010). "Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization". *Journal of Climate* 23.22, pp. 5905–5926. DOI: 10.1175/2010JCLI3490.1.
Swinbank, R. and D. A. Ortland (2003). "Compilation of Wind Data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project". *Journal of Geophysical Research: Atmospheres* 108.D19, p. 4615. DOI: 10.1029/2002jd003135.
Voelker, G. S., G. Bölöni, Y.-H. Kim, G. Zängl, and U. Achatz (2023). *MS-GWaM: A 3-Dimensional Transient Gravity Wave Parametrization for Atmospheric Models*. DOI: 10.48550/arXiv.2309.11257. Journal of Atmospheric Sciences, accepted: arXiv:2309.11257.
Wei, J., G. Bölöni, and U. Achatz (2019). "Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach". *Journal of the Atmospheric Sciences* 76.9, pp. 2715–2738. DOI: 10.1175/JAS-D-18-0337.1.