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• The gravity signature of a planet reflects its internal density 
distribution, which in turn informs about its architecture shaped by 
millions of years of geological processes. 

• Gravity anomaly data often represent one of the few global-scale 
geophysical datasets available for planetary bodies other than 
Earth. 

• The capability to properly model these datasets represents a key 
chance to reconstruct the internal framework of such bodies and 
better elucidate their geological history.
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• Novel tool to perform 3D inverse gravity modelling specifically 
designed for planetary-scale applications.

• Planets’ interior parameterized by polyhedra, suitable to faithfully 
approximate shapes of topography/internal layers.

• Densities of polyhedra defined by polynomial functions1 able to 
deal with the complexity of actual density distributions.

• Model parameters 

• Linear inverse problem when model parameters are polynomial 
coefficients (i.e., Least-square inversion).

• Non-linear inverse problem 
when model parameters are 
polyhedral node positions.

polynomial coefficients
or

polyhedral node positions

Hamiltonian Monte Carlo 
probabilistic inversion scheme2,3
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 Parameterization strategy

|    Density function: ρ = 10000.0 x2yz

• Density information continuous inside the target body.

• Gravity response precise and fast to calculate.  

• GRAVHEDRAL planned to be extended to the magnetic case7.

polynomial basis chosen
data quality/resolution

𝝆𝒕𝒓𝒖𝒆 ൌ 2670.0 - 5000.0x2 - 5000.0y2 - 5000.0z2 + 800.0y2z + 8000.0xyz + 2000.0xy2 + 1000.0x2z + 1000.0x2y

 Least-square inversion6 (with uncertainty quantification)

m1 m2 m3 m4 m5 m6 m7 m9m8

𝒎 ൌ 𝑚ଵ, … … ,𝑚ଽ Polynomial coefficients to estimate by Least-square inversion

• Inverse problem w.r.t. polynomial coefficients becomes linear and 
easy to manage (i.e., few model parameters). 

 Synthetic forward problem (300 observations 𝒐𝒃𝒔)

𝑮 kernel matrix: [300 rows x 9 columns] Very small size compared to that 
using the prism-based approach

Unit of length: km |     Observation point: (15,15,0)

• Methodology-related code released open-source soon.

• Polynomial density function used:
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Work in progress

Posterior covariance matrix 𝑪෩𝑴

𝝆𝒊𝒏𝒗 ൌ 2670.0 - 5000.0x2 - 5000.0y2 - 5000.0z2 + 800.0y2z + 7999.99xyz + 1999.99xy2 + 1000.0x2z + 999.99x2y

Interrogation of 𝝆𝒊𝒏𝒗 provides the density 
value at each point (x,y,z) inside Bennu 

 Performance
(Chipset: Intel i7-11390H @ 3.40 GHz, 32.0 GB RAM)


