## Can Norway save the **European Union's** hydrogen ambition for 2030?

Isabelle Viole PhD Candidate Department of Technology Systems

April 17, 2024



# Why hydrogen from Norway for the EU?

The EU plans to import 10 million tons of (green) hydrogen by 2030 – next to producing 10 million tons themselves

- Norway currently exports 67% of its produced natural gas to the EU27
- Norway is ranked as one of the top ten potentially
  most competitive hydrogen exporters in the world
- Should Norway succeed in realising this potential, it would be able to maintain its economic growth despite a transition away from fossil fuel exports
- Potential pathways for upscaling hydrogen production in Norway
  - A: Business as usual Blue hydrogen from Natural gas + SMR + CCS
  - B: Moderate onshore Green hydrogen from onshore wind buildout
  - C: Accelerated offshore Green hydrogen from offshore wind buildout



![](_page_1_Picture_10.jpeg)

## **Research questions**

C.S.W. Cheng, K. van Greevenbroek, I. Viole: Can Norway save the European Union's hydrogen ambition for 2030? Under preparation.

➢ How cost-competitively could Norway deliver 2 Mt of hydrogen/year to the EU by 2030?

How would the export of low-carbon hydrogen from Norway to the EU affect the energy landscape in Norway in 2030?

![](_page_3_Figure_0.jpeg)

#### PyPSA-Eur: a capacity expansion model for the European energy system

All

UNIVERSITY OF OSLO

![](_page_4_Figure_1.jpeg)

Model documentation: https://pypsaeur.readthedocs.io/en/latest/ipage 5 ntroduction.html

### New components and linear constraints added to PyPSA-Eur

![](_page_5_Figure_1.jpeg)

- 1. A new network bus with attached store/stockpile representing continental hydrogen demand, and three links from the Norwegian export hubs (Tromsø, Trondheim, Stavanger) to this bus.
- 2. A constraint forcing the hydrogen demand stockpile to be filled with the equivalent of 2 Mt of hydrogen (amounting to 66.7 TWh of ammonia in our case) by the end of the year.
- 3. A constraint forcing Norway to remain a net electricity exporter on a yearly basis.
- 4. In Scenario C, a constraint is added forcing total yearly Norwegian offshore wind production to match total yearly electrolysis electricity consumption.

## Results: Blue hydrogen cheapest, offshore wind constraints lead to highest hydrogen costs

![](_page_6_Figure_1.jpeg)

Distributions of levelised costs of Norwegian hydrogen seen across 500 model runs in each of the three Scenarios. These include production, conversion to ammonia and transportation and correspond to the figures in the second row of Table 3. The median costs are marked in white, and the 75<sup>th</sup> and 95<sup>th</sup> percentiles are marked with thick and thin black lines respectively. The coloured areas show kernel density estimations for the probability distributions of the costs.

#### Norway could be cost-competitive with other hydrogen supplying nations in 2030

| Origin                               | Transport<br>medium   | Production method                     | Hydrogen<br>Production cost<br>[€/kgH <sub>2</sub> ] | Cost of delivered<br>hydrogen<br>[€/kgH <sub>2</sub> ] |
|--------------------------------------|-----------------------|---------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| Norway <sup>11</sup>                 | Ammonia               | Scenario A: SMR + CCS (90%)           | 2.05-2.63                                            | 3.50-4.27                                              |
|                                      | Ammonia               | Scenario B: Elec.                     | 2.95-3.83                                            | 4.61-5.72                                              |
|                                      | Ammonia               | Scenario C: Elec. (offshore wind)     | 3.78-5.17                                            | 5.54-7.25                                              |
| Western<br>Canada <sup>12</sup> [14] | Ammonia               | SMR + CCS (85%)                       | 1.85                                                 | 5.56                                                   |
|                                      | Ammonia               | Elec. (onshore wind)                  | 2.68                                                 | 6.39                                                   |
| Morocco [11]                         | $\rm H_2$ pipeline    | Elec. (onshore wind & solar)          | 1.59-3.07                                            | 3.54-5.71                                              |
| Chile [11]                           | Liquid H <sub>2</sub> | Elec. (onshore wind & solar)          | 1.29-2.53                                            | 2.67-4.47                                              |
| Argentina [39] <sup>13</sup>         | Ammonia               | Elec. (on- and offshore wind & solar) | -                                                    | 2.72-4.02                                              |
| Australia [39]                       | Ammonia               | Elec. (on- and offshore wind & solar) | -                                                    | 3.32-4.93                                              |

## Effects on Norwegian energy landscape

![](_page_8_Figure_1.jpeg)

- Especially Scenario B leads to increases in power prices
- Standard model run distributes burdens unevenly. Significantly more onshore wind development in southern Norway

## Effects on Norwegian energy landscape

![](_page_9_Figure_1.jpeg)

- Especially Scenario B leads to increases in power prices
- Standard model run distributes burdens unevenly. Significantly more onshore wind development in southern Norway
- Scenario C would require most of Norway's planned offshore capacity for hydrogen production

## Norway could deliver 2 Mt hydrogen/year to the EU by 2030, BUT...

#### Scenario A

- > SMR typically only captures 90% of  $CO_2$ , so Norwegian emissions would effectively rise
- > Blue hydrogen export contingent on the availability of  $CO_2$  storage infrastructure

#### Scenario B

- Hydrogen from Norwegian onshore wind not cost-competitive with hydrogen from solar PV (lower LCOE)
- Low social acceptance for onshore wind parks in Norway
- Land-use conflicts between the Sámi people and power companies

#### Scenario C

- Offshore wind enjoys stronger political support compared to onshore wind in Norway
- Given the current pace of developments in offshore wind installations, this scenario is not very likely

## Annex

#### Cost assumptions

All in 2023-€

| Technology                                                   | Baseline assumption                                             | Range   |
|--------------------------------------------------------------|-----------------------------------------------------------------|---------|
| Onshore wind investment                                      | €1413/kW                                                        | +/-20%  |
| Bottom-fixed offshore wind investment (excluding connection) | €2921 /kW                                                       | +/-20%  |
| Floating offshore wind investment (excluding connection)     | €5269/kW                                                        | +/-20%  |
| Steam-methane reformation with 90% carbon capture rate       | $\in$ 728 /kW <sub>CH4</sub>                                    | +/-20%  |
| Steam-methane reformation conversion efficiency <sup>4</sup> | 69%                                                             | fixed   |
| Natural gas                                                  | $\in$ 30 /MWh <sub>th</sub>                                     | +/-20%  |
| CO <sub>2</sub> sequestration <sup>5</sup>                   | €36.50 /tCO <sub>2</sub>                                        | +/-20%  |
| PEM electrolysis                                             | €429 /kW <sub>e</sub>                                           | +/-20%  |
| PEM electrolysis efficiency <sup>6</sup>                     | 65%                                                             | 61%-69% |
| Ammonia synthesis <sup>7</sup>                               | €1570 /k $W_{th}$                                               | +/-20%  |
| Ammonia synthesis hydrogen consumption <sup>8</sup>          | $1.15~\mathrm{MWh}_{\mathrm{H2}}/\mathrm{MWh}_{\mathrm{NH3}}$   | fixed   |
| Ammonia synthesis electricity consumption <sup>9</sup>       | $0.25 \ \mathrm{MWh}_{\mathrm{el}}/\mathrm{MWh}_{\mathrm{NH3}}$ | fixed   |
| Ammonia shipping                                             | €1.47 /MWh <sub>th</sub> /1000km                                | +/-20%  |

# Green hydrogen costs mostly affected by assumed electrolysis efficiency (assuming 65% in base case)

![](_page_13_Figure_1.jpeg)

Sensitivities of Norwegian H<sub>2</sub> export costs in Scenarios A, B & C to variations in technological parameters. The coefficients are expressed in LCOH ( $\in$ /kgH<sub>2</sub>) per percentage point (p.p.) change in respective technological parameters.