

Effective Etch Times and Compositional Effects on the Etching

of Fossil Fission Tracks in Geological Apatite Samples

Florian Trilsch¹, Hongyang Fu^{1,2}, Raymond Jonckheere¹, Carolin Aslanian¹, Bastian Wauschkuhn¹, Lothar Ratschbacher¹

I. Introduction

- The fission-track method for determining ages and thermal histories of rocks is based on counting and measuring damage trails from Uranium fission

florian.trilsch@gmx.net; fuhongyang@cug.edu.cn

ch rate Ch rate Ch rate Ch rate Ch rate Ch rate Ch rate

ַבָּוֹ <mark>ב</mark>ווים ווּבָּר

- These damage trails become visible by chemical etching, but questions remain how to relate the etched tracks to the actual damage

- A radial etch model with an apatite etch rate $v_{\rm R}$ and an along track etch rate $v_{\rm T}$ explains the geometries of etched fission tracks

- We explore how $v_{\rm R}$ and $v_{\rm T}$ scale with chemical composition, i.e. *Dpar*

¹TU Bergakademie Freiberg; ²China University of Geosciences, Wuhan

- For samples with known *Dpar*, this allows to calculate effective etch times t_E of individual confined tracks from their widths and v_R ; this has several practical implications (see section IV.)

Figure 2.

III. The track etch rate v_{T} - The track etch rate $v_{\rm T}$ is calculated from the angle

II. The apatite etch rate v_{R}

- We conducted step-etch experiments to calculate v_{R} from width increases of confined tracks in prism faces of 14 samples from the southwestern Tian Shan ($Dpar = 1.4-2.7 \mu m$) and 4 gem apatites ($Dpar = 1.6-4.6 \ \mu m$) (Figure 1)

- $v_{\rm R}$ scales with *Dpar* for all hexagonal apatites (Figure 2a-b):

 $v_{\rm R} = (0.14 \, Dpar + 0.09) \, \phi' \, {\rm e}^{(-0.0017 \, Dpar - 0.0470)\phi'} + 0.1$

- This allows to calculate the apatite etch rate $v_{\rm R}$ and effective etch times for natural samples with known *Dpar*

- Monoclinic apatites show a different v_{R} pattern (Figure 2b)

- The rate of width increase controls the frequencies of tracks in a certain orientation (Figure 2c)

b

- Effective etch time calculations allow a quantitative selection of tracks within an etch-time window that excludes under- and overetched tracks for T-t modelling (Figures 4 and 5)

between the facing straight track boundaries (Figure 1)

- $v_{\rm T}$ correlates with *Dpar* (Figure 3a), suggesting that $v_{\rm T}$ is under chemical control rather than determined by the lattice damage along the track

- Track etch rates vary from track to track, suggesting an imprint of the thermal history on $v_{\rm T}$

- Fossil tracks of samples with low average track etch rates are to different degress under-etched compared to induced tracks using standard protocols (Figure 3b)

- The observations made above suggest the need to adjust immersion times for different samples (Figure 3c)

 $\mathbb{E}_{0} | l_{A} (\mu m)$

 $(l_A = 1.632 l_C - 10.879)$

- This approach allows to adjust the immersion time for individual samples with known Dpar:

-> Longer immersion times or pooling of consecutive etch steps can increase the number of confined tracks for young and U-poor samples

-> Plots of *c*-axis projected length against orientation with a positive slope are a sign of under-etched fossil tracks; further etching lowers the slope and increases the agreement with induced tracks (Figure 5, left panel)

- For our samples T-t models with well-etched tracks ($t_E = 15-30$ s) fit better to independent AHe data than those with the conventional 20 s protocol (Figure 5, right panel)

- The initial mean length of unetched induced tracks is $\sim 15.6 \,\mu m$, independent of the apatite chemical composition (Figure 3d)

