

Estimating global POC fluxes using ML and data fusion on heterogeneous and sparse in situ observations

1) Background

- The ocean biological carbon pump drives the vertical ^{a)} transport of particulate organic carbon (POC).
- Accurate estimates of POC fluxes can shed light on the underlying mechanisms of carbon transport that influence ocean carbon sequestration and the distribution of nutrients to marine ecosystems.
- POC fluxes can be derived from *in situ* observations, with the main sources being:
- 1. Sediment traps
- Directly collects POC over time (a)
- 2. 234-Thorium radioactive tracers
- Derived from 238-U and 234-Th disequilibrium (a)
- 3. Underwater Vision Profilers (UVPs)
- Images \rightarrow particle size distribution \rightarrow POC fluxes (b)
- However, the resulting datasets are often globally sparse, leading to large model uncertainties in under-sampled areas.

Random Forest, c) Neural Networks and d) Bayesian hierarchical models.

References:

Brewin, R. J. W., et al., (2021). Sensing the ocean biological carbon pump from space: A review of capabilities, concepts, research gaps and future developments. doi: 10.1016/j.earscirev.2021.103604 Garcia, H. E., et al., (2019). World Ocean Atlas 2018. https://data.nodc.noaa.gov/woa/WOA18 Britten, G. L., et al., (2021). Evaluating the Benefits of Bayesian Hierarchical Methods for Analyzing Heterogeneous Environmental Datasets: A Case Study of Marine Organic Carbon Fluxes. doi: 10.3389/fenvs.2021.491636

¹ University of Exeter, Exeter, United Kingdom ² National Oceanography Centre, Southampton, United Kingdom

	RMSE	R2
ression	0.3414	0.3964
orest	0.2282	0.7766
work	0.2812	0.6711
erarchical	0.3173	0.4848

the a) Random Forest and b) Neural network model.

Abhiraami Navaneethanathan¹, B.B. Cael², Chunbo Luo¹, Peter Challenor¹, Adrian Martin², Sabina Leonelli¹

Kiko, R., Hauss, H., & Mehrtens, H. (2021). SFB754 Zooplankton and particle distribution from UVP5 measurements. https://doi.org/10.1594/PANGAEA.927040 Mouw, C. B. et al., (2016). Global ocean particulate organic carbon flux merged with satellite parameters. https://doi.org/10.5194/essd-8-531-2016 Ceballos-Romero, E., et al., (2021). More than 50 years of Th-234 data: a comprehensive global oceanic compilation. https://cafethorium.whoi.edu/thorium-data

an498@exeter.ac.uk

5) Discussion

- *Non-linearity*: The RF and NN can model complex nonlinear relationships well.
- Uncertainty: The BHM can give uncertainties for each parameter via the posterior distributions.
- Measurement error: Only accounted for in the BHM.
- Predicting instrument measurements ≠ predicting true POC fluxes.
- Interpretability: The BHM and linear regression give numerical relationships between drivers and POC fluxes.

6) Conclusions

- ML and statistical models trained on fused in situ POC flux observations and environmental driver datasets can effectively estimate global POC fluxes.
- The **random forest** model performs the best.
- The most important environmental drivers for estimating global POC fluxes were found to be the depth parameters (euphotic depth (Zeu), MLD and depth).

7) Future work

- **Regional** and **seasonal** analysis
- Include **interaction** terms

