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4) Preliminary Results
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5) Discussion
- Non-linearity: The RF and NN can model complex non-

linear relationships well.
- Uncertainty: The BHM can give uncertainties for each 

parameter via the posterior distributions.
- Measurement error: Only accounted for in the BHM.

- Predicting instrument measurements ≠ predicting true 
POC fluxes.

- Interpretability: The BHM and linear regression give 
numerical relationships between drivers and POC fluxes.

 

6) Conclusions 
- ML and statistical models trained on fused in situ POC flux 

observations and environmental driver datasets can 
effectively estimate global POC fluxes.

- The random forest model performs the best.
- The most important environmental drivers for estimating 

global POC fluxes were found to be the depth parameters 
(euphotic depth (Zeu), MLD and depth).

 

7) Future work
- Regional and seasonal analysis
- Include interaction terms

Model RMSE R2

Linear Regression 0.3414 0.3964
Random Forest 0.2282 0.7766
Neural Network 0.2812 0.6711
Bayesian hierarchical 
model 0.3173 0.4848

Table 1: Model performance across the 3 data sources

1) Background
 

• The ocean biological carbon pump drives the vertical 
transport of particulate organic carbon (POC).

• Accurate estimates of POC fluxes can shed light on the 
underlying mechanisms of carbon transport that influence 
ocean carbon sequestration and the distribution of nutrients 
to marine ecosystems.

 
• POC fluxes can be derived from in situ observations, with the 

main sources being:

Figure 1: 
a) Sediment 

trap

b) Underwater 
Vision Profiler

• However, the resulting datasets are often 
globally sparse, leading to large model 
uncertainties in under-sampled areas.
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Figure 2: Observations from sediment trap, 234-Thorium tracer and UVP 
datasets between 100-300m depths, 60N-60S and aggregated over 1987-2020  
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3) Methods
 

• Predictors: well-sampled global environmental driver datasets (monthly 
climatologies from the World Ocean Atlas).
• Training data: in situ POC flux observations from three different sources.
• Data fusion: stacking predictions from models trained on multiple samples of the 3 

in situ datasets.

Bayesian hierarchical model (BHM)
- Hierarchical models group the POC flux observations by 

their instruments to appropriately account for their 
uncertainties with domain knowledge.

- This fusion of the 3 datasets gives the true process model
- Trained using MCMC sampling.

Figure 3: General model workflow for predicting global POC fluxes (1 degree resolution)

1. Sediment traps 
• Directly collects POC over time (a)

2. 234-Thorium radioactive tracers
• Derived from 238-U and 234-Th disequilibrium (a)

3. Underwater Vision Profilers (UVPs)
• Images à particle size distribution à POC fluxes (b)
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Figure 4: Figure 4: Schematic diagram of the Bayesian hierarchical model

Figure 5: Global estimates of POC fluxes from a) linear regression, b) 
Random Forest, c) Neural Networks and d) Bayesian hierarchical models. 
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Figure 7: SHAP values of the environmental drivers for 
the a) Random Forest and b) Neural network model.  
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Figure 6: Bayesian hierarchical model parameter posterior 
distributions with corresponding linear regression coefficients 

Figure 8: Global predictions of POC fluxes from models trained on a) UVP 
b) 234-Thorium c) sediment trap observations averaged over all model types
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2) Aims
 

1. Estimate global POC 
fluxes with well-
sampled environmental 
driver datasets, testing 
several types of 
models.

2. Combine in situ 
heterogeneous POC 
flux datasets to address 
the sparsity in 
measurements via data 
fusion methods.

3. Identify the importance 
of each environmental 
driver for predicting 
POC fluxes.
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