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Introduction & aim Spectral domain "open-loop" detectability assessment Retrieval test: signal in the simulated products
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In the context of modelling and analyzing the gravity effect of . . — ::gﬁ
earthquakes, we present the output of a forward modelling Ta rget Slgnal agalnst _____ . Direct difference between solutions
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- providing updates to the solid Earth component of the Tohoku 2011 On the ISH cge icients of each eart quade,.at the tlmef o1 co-seismic gravity change (plus short-term post-seismic) with respect to the n n &
AOHIS model (Dobslaw et al., 2015), to be used in mission Sumatra 2012 doublet intervals under test (time since event and time span o —— M, 8.6 Singkil 2005 simulated signal. We synthesise these signals, from their SH expansions, oy lution includ rth k luti
simulations a gravity product), we apply a windowing function M, 8.4 Bengkulu 2007 using a tapered truncation between SH degrees 40 and 80, i.e. we low- previous sotutio INCluaes earthquake next solution
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assessing the retrievability of the forward modelled according to the spatio-spectral localization by 10 0 T s okhotsk 2013 > ass in the range where the one-pair case already shows positive
earthquake signals in a closed-loop setup Wieczorek & Simons (2005), using a 9° radius spherical " 7.6 ChiChi o 1T 5 P y P - /
- formulating the required signal levels for Mission Maule 2010 ChiChi 1999 3 ’ & P M 7.6 ChIChI 1999 -= detectability of this event.
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- assessing the added value of satellite gravimetry in the W ionals with f imulated : 2 ol Modelled signal Simulation output: S,,; - S, ;
complementing seismological estimates and data from other d O\ (1, 2, 3, 6 satellite paris). SH degree error spectra are P
geodetic observables Singkil 2005 obtained from the HIS retrieval error of each 5 One pair Two pairs Three pairs Six pairs
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least one order of magnitude smaller than co-seismic signals aiming at detecting our signals in the optimal range of spatial Half wavelength [km] 35°S
(depending on the observed time window), they are of particular scales, where the error of the gravity models is smaller, we employ 30-dav solutions and 30 davs of post-seismic signal o o s
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sensed when direct estimates of surface deformation are not for signals with strong regional footprints that require spatio- A single pair would detect all the largest events (M,, = 8.6). A denser A ‘ / |
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Han & Ditmar, 2008). 107 threshold. In addition to that, the spatial resolution is greatly improved. 1\ [~
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Modeling strategy g AN TR g S A Short-term detectability of post-seismic change
%i 1072 4 In a 30-day time span, both in the gravity products and in the post-seismic If we further subtract to this "direct difference” the
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transformed in the QSSP INP-file format, as source entries. e ek 2 Post-seismic deteCtablllty through time becomes detectable only with a 6-pair configuration and years of The model function is the following: ' P 5 red
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