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INTRODUCTION

•	Debris flows are rainfall-induced phenomena, triggered by high intensity and  
short duration rainfall. [Martinengo et al., 2023; Turkington et al., 2016]​

•	Changes in intensity and/or frequency of heavy precipitation are likely to cause  
changes in debris flows occurrence.​

•	Debris flow hazard maps build upon simulations relying on rainfall statistics, i.e.  
Intensity-Duration-Frequency (IDF) curves.​

•	Accounting for non-stationarity of precipitation conditions may be an important  
step towards a further improvement of managing future debris flow risk.​

•	The aim of this work is to assess potential changes in the definition of hazard areas 
by including the projected changes in the intensity and frequency of triggering 
precipitation.​

METHODS

FIRST RESULTS
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DISCUSSION

•	This research tests a modelling workflow to incorporate changes in the intensity 
and frequency of heavy rainfall into official hazard  assessment procedures and 
to evaluate modifications of the current zonation patterns. The basic assumption 
is that all non-climatic factors  potentially influencing the steps of the workflow 
(e.g., vegetation cover, land use, availability of solid material, river transport 
capacity, and many others) remain stable.​

•	Possible changes in the IDF curves are derived from observations and climate 
model projections. The shift (Figure 3a) means that, given the recurrence interval, 
the expected precipitation height could be potentially higher.

•	The hydrographs (Figure 3b) show an amplification of the peak discharge 
considering projected IDFs and consequently a bigger runoff volume.​

•	Figure 3c represent the difference in the deposition height for a 300-year event 
based on projected and observed IDFs suggesting an overall increase of the 
deposited material and extent of affected area.​

•	All steps of the workflow are affected by uncertainties which have to be carefully 
considered and investigated further.

Figure 1: the Toverino River catchment.

Figure 2: the general workflow. Solid arrows: 
observations; Dashed arrows: projections. 

Figure 3: (a) IDF curves obtained  from 
observations and projections for the  scenario 
RCP 8.5 for the period 2051-2100. (b) 
Hydrographs. (c) Comparison of  deposition 
height between observed and  projected IDFs 
for a 300-year event.​

THE X-RISK-CC PROJECT

The X-RISK-CC („How to adapt to changing weather eXtremes and associated 
compound RISKs in the context of Climate Change”) is an EU-funded project aiming 
to support risk managers and policy makers across the Alpine Space in addressing 
the compound risks of climate change extremes by developing new knowledge, 
local risk management actions and transnational guidelines.​

STUDY AREA

•	Toverino River catchment, municipality of Brennero – Brenner, South Tyrol (North-
Eastern Italy).

•	Catchment area: 7.6 km2. Elevation range: 1175 m a.s.l. - 2705 m a.s.l..

•	On 16th August 2021 a heavy rainfall event caused a widespread erosion in the 
upper catchment, triggering a debris flow at the confluence with the Fleres valley.

•	The accumulated debris cused the blockage and consequent flooding of the Fleres 
river, with damages to buildings and infrastructures [Autonome Provinz Bozen – 
Südtirol Provincia Autonoma di Bolzano - Alto Adige, 2021].

CONCLUSIONS AND OUTLOOK

•	The results show that projected changes in the rainfall statistics can lead to 
meaningful changes in the hydrological and hydraulic response of the catchment, 
potentially affecting the hazard zonation. ​

•	The workflow will be finalized and applied to derive an overall evaluation of 
projected changes in the hazard zonation in the Toverino river catchment. ​

•	A throughout evaluation of the model components will be performed by simulating 
past events and comparing model outcomes with collected observations and 
local impact reports.​

•	The approach can be extended to include other types of climate-related hazards.​
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