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Uncertainty quantification in decision support for water
quality

Pesticide transfer modeling at the catchment scale (e.g, [1]) simulates surface /subsurface
hydrology and reactive solute transport:

e based on non linear equations

e need for a large set of spatialized parameters

e many interactive processes not (well) represented

- controllable model inputs: the model parameters

~ uncontrollable model inputs: the forcings : rainfall / pesticide app.
dates (typ. known within a 2/3 day range)

Uncertainty in forcings is propagated to:

e the estimation of the model input parameters

o the global sensitivity analysis (GSA) of model outputs: this is generally
not taken into account due to the complexity of the models [2,3] = this study
objectives

Case study: uncertainty on the pesticide application date

Application of pesticides on the vineyard parcels @ What if this is uncertain whether pesticide applications occurred before
or after a heavy rainfall?
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v pesticides are applied over a small catchment —— After w = wy

v output var. studied: concentration at the outlet —— Before w = wp
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v" simulated pesticide concentrations differ w.r.t. the
application date and model parameters
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— need for a 2-steps global S.A. to investigate [5-0]
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Consideration of uncertain forcings in the global sensitivity analysis and

metamodeling of a pesticide transfer model
K. Radidi¢!?2. C. Lauvernet®, A. Vidard? B. Denise’, F. De Freitas’

2-steps GSA

o Screening with HSIC independence test
Hy: X, 1LY vs. Hy: X, and Y are not independent

Paly = — £ W ——(X;,Y) > HSIC (X;,Y)

HSIC indices, ©Guerlain Lambert

® >obol’ indices with Polynomial Chaos Exp.
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Sensitivity in two contrasting scenarios
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e The HSIC identifies 28 influential parameters on 150
e The Sobol’ indices for the 28 parameters are calculated

e GSA results are different in the two cases

~» what about the application dates between w4 and wg 7
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A more global approach: Sobol’ indices as random

variables
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v Sobol’ indices are seen as random variables,
v" Sobol” indices represented as histograms (depending on the application date)

v the sensitivity of the output on the pest.Koc.1 (pesticide mobility) and others par.
differs visibly w.r.t. the application moment

Conclusion / Next steps

e The GSA results lead to contrasting conclusions depending on the uncertain pesticide
application date

e Considering Sobol” indices as random variables reveals a difference in the influence of
some input factors (pest.mobility Koc, 6, K of some horizons, hpond, etc.)) on the
concentration at the outlet.

e Next step : building a stochastic metamodel of PESHMELBA by inferring the
distributions of the PCE coefficients [6]:
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BUT: in our case complex nonlinear interactions between determ. and stochastic inputs
= other methods are tested for infering distrib.of the coeft. such as KDE, GMM, Prin-
cipal Curve Analysis in 3D on the PCs

1. Approximate each trajectory with a PCE 2. Infer the distribution of c,

fi(x,w) | 0 | (out of Ry, available realizations)
A fs(x,w1) = fpce(x) = agA Ca(w1)Va(x) a) Dimensionality reduction of ¢,
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3. Use GMM for new simulations ¢c™%"
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