
• Model: The parallel implementa2on of 
the Confined–Unconfined Aquifer 
System model (CUAS-MPI) [1] 

• Uses an Effec2ve porous medium 
(EPM) approach [1,2] 
(No individual channels) 

• Solves for the hydraulic head  on 2 
spa2al dimensions 

• We extended the model to solve higher 
order non-linear flows and make use of 
the internal transmissivity evolu2on 
terms
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• What? 
We simulate fluid flow for a variety of cases with 
a generalized diffusion type equa2on and 
validate a subglacial hydrology model with it. 

• Why mul,ple cases? 
By exploring a range of cases that have analy2cal 
solu2ons we can validate more aspects of the 
numerical simula2on, thereby ascertain its 
credibility. 

• Benefits? 
Computa2onally lightweight and easily 
conduc2ble tests to implement into the code as 
verifica2on tools. 

• Novelty 
We extend the general diffusion equa2on for a 
2me evolving diffusivity (akin to creep and cavity 
terms in subglacial hydrology models) and find 
analy2cal solu2ons for this special case. 
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Conclusion
• We show that the non-axisymmetric solver can simulate 

axisymmetric problems consistently with our analy2cal 
predic2ons 

• Numerical results are consistent with similarity solu2ons 
when  is constant, and with non-selfsimilar solu2ons 
when  evolves in 2me. 

• Our solu2ons are readily applicable to other subglacial 
hydrology models using an EMP approach
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Axisymmetric solu2ons
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Mathema,cal Solu,ons
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Similarity solu2on for any  and  
(constraint:  is const.) [3]
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for 2me-dependent transmissivity D = D(t)BResults:

Similarity solu2on


