
• Model: The parallel implementation of 
the Confined–Unconfined Aquifer 
System model (CUAS-MPI) [1]


• Uses an Effective porous medium 
(EPM) approach [1,2]

(No individual channels)


• Solves for the hydraulic head  on 2 
spatial dimensions


• We extended the model to solve higher 
order non-linear flows and make use of 
the internal transmissivity evolution 
terms
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• What?

We simulate fluid flow for a variety of cases with 
a generalized diffusion type equation and 
validate a subglacial hydrology model with it.


• Why multiple cases?

By exploring a range of cases that have analytical 
solutions we can validate more aspects of the 
numerical simulation, thereby ascertain its 
credibility.


• Benefits?

Computationally lightweight and easily 
conductible tests to implement into the code as 
verification tools.


• Novelty

We extend the general diffusion equation for a 
time evolving diffusivity (akin to creep and cavity 
terms in subglacial hydrology models) and find 
analytical solutions for this special case.
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Conclusion
• We show that the non-axisymmetric solver can simulate 

axisymmetric problems consistently with our analytical 
predictions


• Numerical results are consistent with similarity solutions 
when  is constant, and with non-selfsimilar solutions 
when  evolves in time.


• Our solutions are readily applicable to other subglacial 
hydrology models using an EMP approach
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Axisymmetric solutions
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Mathematical Solutions
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Similarity solution for any  and 

(constraint:  is const.) [3]
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