Abstract

What?

We simulate fluid flow for a variety of cases with
a generalized diffusion type equation and
validate a subglacial hydrology model with it.

Why multiple cases?
By exploring a range of cases that have analytical

solutions we can validate more aspects of the
numerical simulation, thereby ascertain its
credibility.

Benefits?

Computationally lightweight and easily
conductible tests to implement into the code as
verification tools.

Novelty
We extend the general diffusion equation for a

time evolving diffusivity (akin to creep and cavity
terms in subglacial hydrology models) and find
analytical solutions for this special case.
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Subglacial Hydrology Model

Model: The parallel implementation of

the Confined—Unconfined Aquifer
System model (CUAS-MPI) [1]

Uses an Effective porous medium
(EPM) approach [1.2]
(No individual channels)

Solves for the hydraulic head /2 on 2
spatial dimensions

We extended the model to solve higher
order non-linear flows and make use of
the internal transmissivity evolution
terms
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Generalization of the flow equations
through a and f
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Time-dependent and spatially
uniform transmissivity D = D(7)
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Axisymmetric solutions

Mathematical Solutions

Similarity solution for any a and f
(constraint: D is const.) [3]
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Time-dependent transmissivity
solution (constraint: a = = 0)
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Conclusion
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® \We show that the non-axisymmetric solver can simulate

when D evolves in time.
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