Validation of effective subglacial hydrology models by Jeremie Schmiedel¹, Angelika Humbert^{2,3}, Thomas Kleiner² and Roiy Sayag^{1,4,5}

1 Ben-Gurion University of the Negev, BIDR, AYDSEEP, Israel, **2** Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, Germany 3 Faculty of Geosciences, University of Bremen, Bremen, Beer-Sheva, Israel, 5 Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of the Negev, Beer-Sheva, Israel 3 Faculty of Geosciences, University of Geosciences, University, Geosciences

Abstract

• What?

We simulate fluid flow for a variety of <u>cases</u> with a generalized diffusion type equation and validate a subglacial hydrology model with it.

• Why multiple cases?

By exploring a range of cases that have analytical solutions we can validate more aspects of the numerical simulation, thereby ascertain its credibility.

Benefits?

Computationally lightweight and easily conductible tests to implement into the code as verification tools.

Novelty

We extend the general diffusion equation for a time evolving diffusivity (akin to creep and cavity terms in subglacial hydrology models) and find analytical solutions for this special case.

Results: (A) with D = const. for different α, β

Online Abstract

Subglacial Hydrology Model

Model: The parallel implementation of the Confined–Unconfined Aquifer System model (CUAS-MPI)^[1]

Uses an Effective porous medium (EPM) approach ^[1,2] (No individual channels)

Solves for the hydraulic head h on 2 spatial dimensions

 We extended the model to solve higher order non-linear flows and make use of the internal transmissivity evolution terms

B)

$$S_e \frac{\partial h}{\partial t} = \nabla \cdot (T \nabla h) + Q$$

Transmissivity evolution

$$\frac{dT}{dt} = \text{melt} - \text{creep} + \text{cavities}$$

Similarity solution

(Contact: Schmieje@post.bgu.ac.il)

hydraulic head

effective transmissivity

Q water source effective storage

Generalization of the flow equations through α and β

$$S_e \frac{\partial h}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r T \frac{\partial h}{\partial r} \right)$$

$$T = Dh^{\beta}$$

Time-dependent and spatially uniform transmissivity D = D(t)

dDadd = -aD + bcreep cavities

front extent conductivity initial h curvature

for time-dependent transmissivity D = D(t)

Axisymmetric solutions

Mathematical Solutions

Similarity solution for any lpha and eta(constraint: D is const.) ^[3]

$$h(r, t) \propto t^{\delta} \qquad \qquad \delta = \frac{\alpha - 1}{\beta + 1}$$
$$r_N \propto t^{\gamma} \qquad \qquad \gamma = \frac{\alpha\beta + 1}{2(\beta + 1)}$$

Time-dependent transmissivity solution (constraint: $\alpha = \beta = 0$)

$$h(r,t) = \frac{h_0}{G(t)} e^{-\frac{\sigma r^2}{G(t)}}$$

$$G(t) = 1 + \frac{4\sigma}{aS} (c_0(1 - e^{-at}) + b t)$$

Conclusion

- We show that the non-axisymmetric solver can simulate axisymmetric problems consistently with our analytical predictions
- Numerical results are consistent with similarity solutions when D is constant, and with non-selfsimilar solutions when D evolves in time.
- Our solutions are readily applicable to other subglacial hydrology models using an EMP approach

<u>References</u>

1] Fischler, Y. et al. (2023) A parallel implementation of the confined–unconfined aquifer systemmodel for subglacial hydrology: Design, verification, and performance analysis (cuas-mpi v0.1.0). Geoscientific Model Development, 16(18), 5305–5322. DOI: 10.5194/gmd-16-5305-2023

[2] Beyer, S. et al. (2018) "A confined-unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream" In: The Cryosphere 12.12, pp. 3931–3947. DOI: 10.5194/tc-12-3931-2018 [3] Barenblatt, G.I., 1952. On some unsteady-state movements of liquid and gas in porous medium. Prikl. Mat. I Mekh. 16 (1), 67–78, [In Russian].

Financial support

This research has been supported by the German-Israeli Foundation for Scientific Research and Development (GIF) (grant no. I-1493-301.8/2019)