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Introduction

m Soil moisture impacts the evaporative fraction.

m Plays an important role in the water and energy
budgets at the land surface.
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Figure from Hsu and Dirmeyer (2023).
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Research question

m Sensible and latent heat in turn are linked to
atmospheric temperature, humidity, and even
precipitation.
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Figure adapted from Santanello et al. (2016).

How are meteorological forecasts impacted by assimilating surface soil moisture (SSM)? @
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Data assimilation

Land surface modeling

— Noah-MP 4.0.1 (18 km)

— MERRA-2 atmospheric forcing

— Gap-free estimates of SSM, ET, ...
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Data assimilation

Land surface modeling Remote sensing

— Noah-MP 4.0.1 (18 km)
— MERRA-2 atmospheric forcing
— Gap-free estimates of SSM, ET, ...
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Data assimilation

Land surface modeling Remote sensing
— Noah-MP 4.0.1 (18 km) — SMAP L2 SSM retrievals (36 km)
— MERRA-2 atmospheric forcing — Rescaled to model climatology
— Gap-free estimates of SSM, ET, ... — Gaps in space and time
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Data assimilation (DA)
Optimally combine models and obser-
vations (Ensemble Kalman Filter).
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Figure from Evensen et al. (2022).
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Experimental design
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Experimental design
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Experimental design
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Experimental design
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Experimental design

m Two-week meteorological forecasts over the US.

® MERRA-2 initial and boundary conditions.

® 18 km Lambert conformal grid.

120 experiments
Noah-MP + WRF
Jan 2016 - Dec 2020
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Impact of SSM DA on air temperature

®m RMSD between OL and DA experiments
shows the impact of SSM DA on Tp,.

m More impact during warmer seasons.

m OL and DA experiments diverge with
longer lead times.
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Impact of SSM DA on air temperature
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Evaluation with ERA5

m Which of the two experiments yields the best meteorological forecast?
m Compare T,y predictions with the ERAS reanalysis.
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Evaluation with ERA5

m Evaluation of Tom, aggregated over all
lead times.

m Improvements in east of domain,
degradations in west.

m Larger impacts during the warmer
seasons.
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Conclusions

Conclusions
m We initialized the land component of a coupled land-atmosphere simulation with

an OL experiment;
an SSM DA experiment.

m Substantial differences in forecasted air temperature.
m Evaluation: both improvements and degradations in air temperature comparing SSM DA to OL.

7/7



Conclusions

Conclusions
m We initialized the land component of a coupled land-atmosphere simulation with

an OL experiment;
an SSM DA experiment.

m Substantial differences in forecasted air temperature.
m Evaluation: both improvements and degradations in air temperature comparing SSM DA to OL.

What is next?
m Evaluate forecasts of other meteorological variables (humidity, precipitation, ...).
= Improve results in the west of the domain.
m Make the link with model-based land-atmosphere coupling metrics.
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Thank you!
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