Vertical profiling of greenhouse gas mixing ratios above a coastal marsh using a laser heterodyne radiometer

J. Houston Miller^{*1}, Monica F. Flores¹, Anthony Gomez², and David S. Bomse² ¹ Department of Chemistry, George Washington University, Washington, DC 200521, USA ² Mesa Photonics, 1550 Pacheco Street, Santa Fe, NM 87505, USA Email: houston@gwu.edu

EGU 2024

DoE DE-SC0019543 (Atmospheric Radiation Measurement)

Atmospheric Diagnostics

- Many options for "Point Sensors"
 - Ground: good temporal resolution, lousy spatial coverage
 - Aircraft: good temporal, slightly better spatial
- LIDAR, microwave sounding, TCCON
- Satellites
 - Typically report column averages
- Reliance on modeling to fill in the holes

Wetlands and Carbon

- *Inland* wetlands: largest natural source of CH₄ emissions 15-45%
 - Negligible contribution from *coastal* wetlands
- Coastal wetlands: net carbon sinks
 - ~300–600 Gt stored carbon
 - 5.1 °C Temp increase → >2x coastal wetland emissions
- Large uncertainty in land-air exchange
 - Complicated by carbon cycle
 - Data used in models are difficult to scale up

Smithsonian Environmental Research Center

Smithsonian Environmental Research Center (SERC)

GCREW CO₂ Chamber Flux Data

6

GCREW CH₄ Chamber Flux Data

Greenhouse Gas Absorption Spectroscopy

Laser heterodyne radiometry (LHR) (a very brief history)

Robert Menzies

(1970s)

- "Remote sensing with infra-red heterodyne radiometers", Optoelectronics volume 4, pages179–186 (1972).
- "Remote detection of SO₂ and CO₂ with a heterodyne radiometer", Appl. Phys. Lett. 22, 592 (1973).
- "Laser heterodyne detection techniques." in Laser Monitoring of the Atmosphere, pp 297–353 (1976).

Jet Propulsion Laboratory California Institute of Technology

PHOCS 2017 Mesa Photonics

Laser heterodyne radiometry (LHR)

- Adapted from and analogous to radio receiver technology.
- Incoming light is combined with light from a narrow-band laser source (the local oscillator or LO) on a photodetector.
- The detector output contains AC electronic signals at the (optical) difference frequencies.
- PHOCS heterodyne signals are proportional to the solar spectrum at the LO wavelength.
- When the LO coincides with an optical absorbance, the heterodyne signal intensity will drop by an amount proportional to the absorbance.

Laser hete *radiometry* (LHR)

- It is an atmospheric absorption technique measuring the sun light intensity as a function of light frequency at the surface.
- There are lasers involved, but no light laser light leaves the instrument. •
 - *"PASSIVE" laser technique.*
 - High spectral resolution of the laser and radiofrequency electronics enable vertical profiling.
- The characteristics of light absorption depend on pressure and temperature which change along the path through the atmosphere.
 - We need a detailed model of atmospheric structure to interpret the spectra.

LHR installation at SERC/GCREW

0.6 m Rack Components:

- 1. Power distribution & USB
- subsystems 2. Solar tracker
- electronics
- 3. CO₂/CH₄
- 4. O₂/H₂O
- 5. (Future?) Open Path Instrument

LHR at SERC/GCREW

Not with out some bumps in the road...

- The Plague
 - Access limitations at GW or SERC.
 - Supply chain: 14-month delay in delivery of dome from the UK
 - Some assembly required.
- First deployed instrument was a "Franken-Fox" combination of parts from GW, NASA, and Mesa Photonics.
- First new heterodyne unit (at 1278 nm) delivered in Spring 2023
- Second (1651 nm) delivered in Summer 2023

Santa Fe measurements SERC measurements

The Atmosphere

https://www.weather.gov/jetstream/layers

Vertical Profiling Method

- 1. Raw Transmission Spectra
- 2. Calibration
- 3. Absorbance Spectra
- 4. Isolate features from CO₂ and CH₄
- 5. Refine Calibration Using LahetraSim
- 6. Calculate spectrum-specific absorption path coefficient matrix
- 7. Fit using Nelder-Mead or Truncated Newton Method

- 1. Raw Transmission Spectra
- 2. Calibration
- 3. Absorbance Spectra
- 4. Isolate features from CO₂ and CH₄
- 5. Refine Calibration Using LahetraSim
- 6. Calculate spectrum-specific absorption path coefficient matrix
- 7. Fit using Nelder-Mead or Truncated Newton Method

- 1. Raw Transmission Spectra
- 2. Calibration
- 3. Absorbance Spectra
- 4. Isolate features from CO₂ and CH₄
- 5. Refine Calibration Using LahetraSim
- 6. Calculate spectrum-specific absorption path coefficient matrix
- 7. Fit using Nelder-Mead or Truncated Newton Method

- 1. Raw Transmission Spectra
- 2. Calibration
- 3. Absorbance Spectra
- 4. Isolate features from CO₂ and CH₄
- 5. Refine Calibration Using LahetraSim
- 6. Calculate spectrum-specific absorption path coefficient matrix
- 7. Fit using Nelder-Mead or Truncated Newton Method

- 1. Raw Transmission Spectra
- 2. Calibration
- 3. Absorbance Spectra
- 4. Isolate features from CO₂ and CH₄
- 5. Refine Calibration Using LahetraSim
- 6. Calculate spectrum-specific absorption path coefficient matrix
- 7. Fit using Nelder-Mead or Truncated Newton Method

Where are we (and where are we going)?

The Good

- Arguably (one of) the best performing LHR instrument we are aware of.
 - Good performance (SNR > 100) at 100 MHz (0.0033 cm⁻¹) spectral resolution

The not so Good

- Current data record is temporally sparse and difficult to draw many meaningful scientific inferences
 - We need to do better in moving to autonomous operation
- Retrieval is still too cumbersome.

Where are we (and where are we going)?

The Good

- Arguably (one of) the best performing LHR instrument we are aware of.
 - Good performance (SNR > 100) at 100 MHz (0.0033 cm⁻¹) spectral resolution

The not so Good

- Current data record is fairly sparse and difficult to draw any meaningful scientific inferences
 - We need to do better in moving to autonomous operation
- Retrieval is still too cumbersome.
 - The goal is Drag and Drop individual data records into a program queue

Where are we (and where are we going)?

The Good

- Arguably (one of) the best performing LHR instrument we are aware of.
 - Good performance (SNR > 100) at 100 MHz (0.0033 cm⁻¹) spectral resolution

The not so Good

- Current data record is fairly sparse and difficult to draw any meaningful scientific inferences
 - We need to do better in moving to autonomous operation
- Retrieval is still too cumbersome.
 - The goal is *Drag and Drop* individual data records into a program queue
 - We don't yet fully understand the uncertainty in the retrievals: How sensitive are the fits to individual layer mixing ratios?
 - Absolutely, we need to constrain layer mixing ratios to deliver meaningful results and useful "priors" are difficult to come by.
 - Not as sensitive to (very near) surface emissions as we would like.
 - Averaging over the boundary layer
 - Co- location with one or more mixing ratio and/or flux point experiments would add valuable insight.

What we didn't have time to talk about

- Santa Fe, New Mexico!
 - Lower humidity (1278 nm data) and higher elevation
- A novel way to refine temperature and pressure value using a trio of O₂ features (1278 nm data)
- Hydrogen Fluoride detection in the stratosphere (1278 nm data).

Acknowledgements

- Smithsonian Environmental Research Center
 - Roy Rich
- Mesa Photonics and GWU were supported under a joint Small Business Technology Transfer grant from the Department of Energy, DE-SC0019543.

Smithsonian Environmental Research Center

