Representation of Arctic mixed-phase clouds in the ECMWF Integrated Forecasting System during MOSAiC

Luise Schulte^{1,2}, Linus Magnusson¹, Richard Forbes¹, Jonathan Day¹, Vera Schemann², Susanne Crewell² Luise.Schulte@ecmwf.int (1) European Centre for Medium-Range Weather Forecasts (ECMWF); (2) University of Cologne, Germany

The Model

The ECMWF Integrated Forecasting System (IFS) is a global numerical weather prediction model, which is also used for climate predictions and the reanalysis **ERA5**. The representation of clouds is important because of their radiative impact, but uncertain (e.g. Morrison et al., 2020). Cloud processes are parametrised based on grid-box mean quantities (see references for full documentation).

The IFS Single Column Model (SCM) simulates one atmospheric column using the same parametrisations as the 3D model. The column is initialised and forced with profiles and advective tendencies from a 3D model run.

The Observations

The MOSAiC campaign provides atmospheric observational data from the central Arctic for a **full year** (Shupe et al., 2022). Arctic mixed-phase clouds are common and have a large radiative forcing compared to ice-only clouds (Shupe and Intrieri, 2004).

Data used for the evaluation:

Temperature & Moisture profiles	Extended radiosonde profiles Dahlke et al., 2023
LWP, IWV	HATPRO & MiRAC-P MWR Walbröl et al., 2022
Broadband radiation (LW/SW down)	Atmospheric Surface Flux Stations at 4 sites Cox et al., 2023 abcd
Liquid water content, Ice water content	ShupeTurner cloud microphysics product Shupe 2022
Sea ice cover	Krumpen et al., 2021

CC-BY 4.0 Alfred-Wegener-Institut / Stefan Hendric

Example case of missed clear-sky periods in July

Example case of missed liquid-containing clouds in December

The representation of ice mass in Arctic mixed-phase clouds and its parameterisation remains to be investigated. Is the total amount of cloud water correctly represented? What is the partitioning between liquid and ice?

Single Column Model

A setup test shows comparable sensitivity in 3D Model and SCM.

The modelled LWP shows a strong **sensitivity** to scaling of the efficiency of the **Wegener-Bergeron-Findeisen (WBF)** process / deposition rate in winter.

The WBF efficiency depends on assumptions of the ice particle number concentration and size distribution (single moment scheme). The choice of the parametrisation affects the LWP – from underestimation

Q-q plots for December 2019

