A NEW METRIC FOR PLANETARY SURFACE HABITABILITY

HANNAH WOODWARD ${ }^{1}$, ANDREW RUSHBY ${ }^{1}$, IAN CRAWFORD ${ }^{1}$, \& NATHAN MAYNE ${ }^{2}$
hannah.woodward@bbk.ac.uk • ${ }^{1}$ BIRKBECK, UNIVERSITY OF LONDON, UK; ${ }^{2}$ UNIVERSITY OF EXETER, UK

INTRODUCTION

- Considering the habitable area of a planetary surface is important for the potential emergence and evolution of life, with implications for the subsequent generation and detection of biosignatures or technosignatures.
- A variety of habitability metrics have been defined so far, based upon habitable surface temperature ranges, open ocean (or equivalently ice free) fraction, and aridity ${ }^{[1-6]}$. Some of these have been used to calculate the 'fractional habitability' of a planet for comparisons

METHODS

- Metric definition: Combining the complex life habitability metricic] with the observed temperature limits of microbial life $[7]$, we define $H_{T}=H_{T}(\phi, \lambda)$ describing the thermal habitability:

$$
H_{T}= \begin{cases}\text { complex } & \text { if } 273.15 \leq T_{s} \leq 323.15, \\ \text { microbial } & \text { if } 253.15 \leq T_{s} \leq 395.15, \\ \text { limited } & \text { otherwise }\end{cases}
$$

for latitude ϕ, longitude λ, and surface air temperature $\mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{s}}(\phi, \lambda)[K]$. The climatological surface habitability $H=H(\phi, \lambda)$ is then defined as the result of H_{T} with an additional condition representing water availability:

$$
H= \begin{cases}H_{T} & \text { if } P-E \geq 0 \& P \geq 250 \\ \text { limited } & \text { otherwise }\end{cases}
$$

for precipitation P and evaporation $E[m m$ year-1]. The minimum P condition is based on the definition of a desert on Earth ${ }^{[8]}$

- Fractional habitability: Each category is calculated as the weighted fraction of all grid cells which satisfy the respective conditions defined above.
- 'Predicted' climatological habitability: Calculated from ERA5 reanalysis ${ }^{[9]}$ annual means across 2003-2018.
of broad parameter sweeps or to explore spatial patterns of surface habitability ${ }^{[1-6]}$
We build upon these previous studies to introduce a new climatological metric which is defined using the known thermal limits of life on Earth, along with a consideration of surface water fluxes. It is the first of its kind to consider both microbial and macroscopic complex life, as well as being validated against datasets representing surface life on Earth.
'Observed' habitability: $\mathrm{Ho}=\mathrm{Ho}(\phi, \lambda)$ is calculated from satellite derived data - normalised difference vegetation index (NDVI) on land ${ }^{[10]}$, and gap-filled Chlorophyll-a concentration (Chl-a, $\mathrm{mg} \mathrm{m}^{-3}$) in the ocean ${ }^{[11]}$ - with the following conditions:
$H_{O}= \begin{cases}\text { complex } & \text { if } N D V I>0.3 \mid \text { Chl }-a_{\text {min }}>0.15, \\ \text { microbial } & \text { if } N D V I>0.15 \mid \text { Chl }-a_{\text {mean }}>0.15, \\ \text { limited } & \text { otherwise }\end{cases}$ limited otherwise
where non-subscripted and subscripted min denote annual mean and minimum values, respectively. Thresholds are based upon values of different biomes (NDV) ${ }^{[12,13]}$ and phytoplankton size class (Chl-a) [14].

Validation tests: Accuracy as weighted fraction of grid cells correct, Heidke Skill Score (HSS) [151 for attributing accuracy to predictive skill vs random chance, and χ^{2} for statistical significance of relationship with observed.
Aquaplanet simulations: ExoCAM ${ }^{[16]}$ (slab ocean) and ROCKE-3D[17] (slab + dynamic ocean) used to simulate an 'aquaplanet' Earth orbiting a solar-type (G2V) star.

- Aquaplanet config: $\varepsilon=23.4^{\circ}$, solar flux $=1360 \mathrm{~W} \mathrm{~m}^{-2}$, 2003-2018 atmospheric composition: ~ 1 bar $N_{2}+$ 390 ppm CO $2+1810$ ppb CH $44^{18,19]}$.

Key Findings

- Presented a new surface habitability metric based on surface temperature, precipitation, and evaporation. - Metric qualitatively captures patterns of observed habitability (e.g. 'limited' deserts, mountains, oligotrophic sub-tropical gyres; 'complex' equator \& mid-latitudes; 'microbial' high-latitudes).
- Metric is validated against satellite-derived data of photosynthetic life with a statistically significant relationship across marine and terrestrial domains that can be attributed to predictive skill vs random chance.
- Overall accuracy of 67% (microbial) \& 69\% (complex) higher accuracy and skill found in terrestrial domain. - Observed marine habitability (and validation results) may be impacted by Chl-a data issues: high latitude gaps during wintertime and positive bias at low values. -Aquaplanets: similar habitable patterns \& fractions, but differences between models and configuration highlight importance of intercomparisons
-Future work: compare to other defined metrics of surface habitability; apply metric to other planets!

RESULTS: METRIC VALIDATION

- Metric indicates water limitation at low latitudes and a mixture of temperature/ water limitation at high latitudes $\&$ altitudes.
Fractional habitability

	Microbial	Complex
Predicted	0.53	0.41
Observed	0.59	0.36

VALIDATION STATISTICS

Domain	Accuracy		χ^{2}		HSS	
	M	C	M	C	M	C
Terrestrial	0.80	0.77	2992	4247	0.50	0.60
Marine	0.63	0.65	2044	1781	0.26	0.24
Global	0.67	0.69	4817	5313	0.34	0.36

-RESULTS: AQUAPLANET COMPARISON

Presence of land primarily affects water availability at low latitudes and temperature at high latitudes. - Ocean configuration affects meridional heat transport \& ITCZ 'mode'. Model choice also affects T_{s} globally and $\mathrm{P}-\mathrm{E}$ at lower latitudes. Validation \& Fractional habitability

	Accuracy		χ^{2}		HSS		${ }_{\text {H }}$	
	M	C	M	c	M	C	M	C
ERA5 (4x50)	0.67	0.69	229	255	0.33	0.35	0.53	0.41
ExoCAM (Slab)	0.68	0.61	266	121	0.36	0.23	0.53	0.53
ROCKE-3D (Slab)	0.67	0.69	248	241	0.34	0.34	0.48	0.41
ROCKE-3D (Dynamic)	0.62	0.55	100	44	0.22	0.14	0.56	0.56
M: Microbial, habitability, X	C: Cor $\mathbf{r}^{2}: ~ c h i-$	mplex,	d sta	$i c w$	$\begin{array}{llll} \text { ill Sco } \\ \mathrm{p} \end{array}$	$0-11 \text {, do }$	$\begin{aligned} & : \text { fractic } \\ & \text { of=1 } \end{aligned}$	

