

EGU 2024 G2 - Reference Frames and Geodetic Observing Systems

G2.1 Precise Orbit Determination for Geodesy and Earth Science

Tailored accelerometer calibration by POD for thermospheric density computation with GRACE and GRACE-FO

Florian Wöske, Benny Rievers, Moritz Huckfeldt

Vienna, 19. April 2024

University of Bremen r_{Sun} ellow: illuminated Z_{h} Blue: not illuminated, Red: shadowed 0.6 200 250 Reflectivity [-] Long wave flux $[W/m^2]$ Treatment of optical properties: Satellite $\vec{r}_{ij} - \vec{r}_{sat}$ Thoda t z Earth

A: Absorption, B: Spec. Reflection, C: Diff. Reflection

Α

R

Radiative Non-Gravitational Force Modeling

Introduction

- Computation of each force with FE Model, including shadowing
- Hourly CERES data for Earth's reflectivity and infra red radiation on 1°*1° latitude-longitude grid
- Well known geometric conditions, attitude of satellite, and intensity of the Sun
- Optical parameters of satellite surfaces known relatively well from ground testing

 df_d

Comparison with GRACE Accelerometer Data

Introduction

- X_{SRF} axis closely aligned with orbital velocity direction
- ➤ Y- and z-axis barely contain any drag acceleration

Modeled non-grav. accelerations and calibrated ACC data (daily bias for each axis), GRACE A. Times of attitude thruster firings removed

Motivation

- Accelerometer data (ACC) need to be calibrated
- $ACC_{cal} = \vec{s}(t) ACC + \vec{b}(t)$
- $\Rightarrow ACC_{cal} = \vec{s}(t) \left(ACC + \vec{b}(t) / \vec{s} \right)$
 - Scale only affects amplitude
 - Bias is the offset
- Usually accelerometer calibration just side product
 - Orbit determination of all geodetic satellites
 - Gravity Field Recovery (GFR) from GRACE/-FO
- Many estimation parameters, stochastic parameters, parameters for different sensors, high KBR weighting, etc.
- ACC calibration parameters absorb many different effects → no physical accelerometer calibration

Raw accelerometer data of x-,y-, z-axis ACC L1B, GRACE A

University

of Bremen

Overview of Dynamic POD

- Classical dynamic POD with "standard" state-of-theart force models
- Observation data
 - GNSS position data
 - GNV L1B
 - Kinematic Orbit Solution (KOS) TU Graz
 - Low-low Satellite-to-Satellite Tracking
 - KBR L1B

Pertubation	Model
Earth gravity	Different: <mark>GOCO06s, EIGEN-6s4,</mark> ITSG, COST-G/ FSM, GGM05s
Third body	JPL DE430 ephemerides
Solid Earth tides	IERS 2010
Ocean tides	FES14b
Pole pides	IERS 2010
Ocean pole tides	IERS 2010
Atmospheric tides	N1 Biancale & Bode
Dealiasing	AOD1B RL06
Relativistic corrections	IERS 2010
Earth rotation	IERS 2010, EOP 14C04_2000A

Parametrization

- Calibration of Accelerometer
- ACC_{cal} = $\vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$ Scale Offset
- Parametrization
 - Which parameter
 - Global and local parameters
 - Arc length for glob. and loc. parameters
 - Couple parameters between
 arcs

Offset	Scale factor	Arc length scale	Arc length offset
Bias	estimated or constant	3h, 1, 3, 7 days, 1 month	3h
Bias + drift	est., const.	3h 1m	3h
Bias + drift cpld.	est., const.	1m	3h

Parametrization - Offset

- $ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- Additional drift increases offset variability
- Coupling only reduces variability slightly
- Bias only gives smoothest offset
- Lower variability in x-axis than y- and z-axis

<mark>Offset</mark>	Scale factor	Arc len. scale	Arc len. offset
<mark>Bias</mark>	est., const.	3h 1m	3h
<mark>Bias+drift</mark>	est., const.	3h 1m	3h
Bias+drift cpld.	est., const.	1m	3h

Calibration with different offset parametrizations: bias, bias+drift and bias+drift coupled, GRACE A

University

of Bremen

Parametrization – Scale (arc length)

- $\blacktriangleright \quad ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- The shorter the arc length, the higher the scale variability
- Abrupt bias changes reduce with smoother scale
- 1 day results do not seem physical

Offset	Scale factor	Arc len. scale	Arc len. offset
Bias	est., const.	<mark>3h 1m</mark>	3h
Bias+drift	est., const.	3h 1m	3h
Bias+drift cpld.	est., const.	1m	3h

Calibration with different scale parametrization: 1 day, 7 days and 1 month, GRACE A

Parametrization – Scale (arc length)

- $\blacktriangleright \quad ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- 2012 higher solar activity -> higher drag in x-axis
- Lower variability in x-axis
- Scale factor sensitive to size of total acceleration, in contrast to offset (bias)

Offset	Scale factor	Arc len. scale	Arc len. offset
Bias	est., const.	<mark>3h 1m</mark>	3h
Bias+drift	est., const.	3h 1m	3h
Bias+drift cpld.	est., const.	1m	3h

Scale with different parametrization: 1 day, 7 days and 1 month, GRACE A

Bias

Parametrization, POD and GFR – Scale (arc length)

- $\blacktriangleright \quad ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- Definitely no physical calibration results with 3h scale
- Not enough data for estimation of insensitive parameters
- Scale and bias coupled
- GFR shows different trend
- Sensitivity of GFR and POD interchanged in y- and z-axis

Offset	Scale factor	<mark>Arc len. scale</mark>	Arc len. offset
Bias	est., const.	<mark>3h</mark> 1m	3h
Bias+drift	est., const.	3h 1m	3h
Bias+drift cpld.	est., const.	1m	3h

Scale

POD and GFR calibration with **3h** scale parametrization, GRACE A. (Monthly POD scale as reference)

PAGE 11 Florian Wöske, EGU24 - 20733

Scale Parametrization, Gravitational Models

- $\blacktriangleright \quad ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- Scale variability correlates with size of total acceleration (x-axis)
- ACC temperature control switch-off in April 2011
- We also estimated const. scale factors for two periods
- Much higher variability with GOCO06s

Pertubation		Model		
Earth gravity		Different: <mark>GOCO06s, EIGEN-6s4,</mark> ITSG, COST-G/ FSM, GGM05s		
Offset	Scale factor		Arc len. scale	Arc len. offset
Bias	<mark>est., const.</mark>		3h 1m	3h
Bias+drift	est., const.		3h 1m	3h
Bias+drift cpld.	est., const.		1m	3h

Estimated monthy and const. scale, with GOCO06s and ITSG gravitational models, GRACE A.

Parametrization – Scale

- $\blacktriangleright \quad ACC_{cal} = \vec{s} \left(ACC + \vec{b}(t) / \vec{s} \right)$
- Oscillation with β' angle which correlates with sensor temperature
- Visible due to distinctly higher total accelerations

Estimated monthy scale, with GOCO06s and ITSG gravitational models, and const. scale (two periods), GRACE A.

Bias+drift	est., const.	3h 1m	3h
Bias+drift cpld.	est., const.	1m	3h

est., const.

Offset

Bias

Arc len. scale

3h ... 1m

Arc len. offset

3h

Gravitational Models GRACE

- Different type of models
- GOCO06s time dependent
- **EIGEN-6s4** time dependent
- ITSG monthly
- GGM05s mean, 2003-2013
- Much bigger scale variability for GOCO06s
- ITSG giving smoothest results for scale and bias (very similar to monthly COST-G models)

Calibration with monthly scale for different gravitational models GOC006s, ITSG, GGM05s and EIGEN-6s4, GRACE A.

Pertubation	Model
Earth gravity	Different: <mark>GOCO06s, EIGEN-6s4,</mark> ITSG, COST-G/ FSM, GGM05s

Gravitational Models GRACE-FO

- Different type of models
- GOCO06s time dependent
- COST-G FSM time dependent
- ITSG monthly
- COST-G monthly
- Also here GOCO06s distinctly different
- Monthly COST-G bias slightly more noisy

PertubationModelEarth gravityDifferent: GOC006s, EIGEN-6s4,
ITSG, COST-G/ FSM, GGM05s

Calibration with monthly scale for different gravitational models GOC006s, ITSG, COST-G FSM and COST-G monthly, GRACE-FO C.

Different Observation Data

- Official reduced-dynamic orbit solution GNV L1B
- Kinematic Orbits KOS (from TU Graz)
- K-Band inter satellite ranging
 KBR L1B range rate (+GNV)
- GNV and KOS very similar
 BUT for z-bias
- With KBR higher scale variability

Scale

Bias

Calibration with monthly scale with different observation data GNV, GNV+KBR and KOS, GRACE A.

PAGE 16 Florian Wöske, EGU24 - 20733

Post-fit POD Residuals

- Residuals are lower the more parameters are estimated
- This is the case for all shown parametrizations
- Sh and 1d scale showed very unphysical calibration results
- ➤ Residuals are not able to validate ACC calibration

Different scale parametrization: 3 hours, 1 day, 7 days and 1 month Different offset parametrization: bias, bias + drift, bias + drift cpld. and bias + drift. 3h

Arc-wise RMS of position residuals

University of Bremen

With Modeled Accelerations

- Very accurate radiative non-gravitational force models
- X-axis closely aligned with orbital velocity direction
- ➤ When solar activity is low basically no drag in y-, z-axis
- Comparison of x-axis not meaningful

Modeled accelerations in x-, y-, z-axis and POD calibrated ACC data

With Modeled Accelerations

- Very accurate radiative non-gravitational force models
- X-axis closely aligned with orbital velocity direction
- ► → When solar activity is low basically no drag in y-, z-axis
- Comparison of x-axis not meaningful
- Sensitivity of POD in x-direction much higher than in y- and z-direction
 → No direct conclusions from y, z results on x possible!
- But ACC should behave the same in all axes

Modeled accelerations in y-, z-axis and POD calibrated ACC data

RMS residuals in y, z: 6.16, 8.19 nm/s^2

With Modeled Accelerations

Offset difference POD calibration and modeled acc. (daily bias)

PAGE 20 Florian Wöske, EGU24 - 20733

With Modeled Accelerations

- Very accurate radiative non-gravitational force models
- Comparison of x-axis not meaningful
- When solar activity is low basically no drag in y-, z-axis
- Very big offsets up to 60%
- → Unrealistic that models have such large offset while matching the trend very well
- Difference is mainly an error of POD
- ► → Estimation of an additional daily bias w.r.t. modeled data for y- and z-axis
- Residuals to validate different POD calibration options

Modeled accelerations in y-, z-axis and POD calibrated ACC data

RMS residuals in y, z: 1.06, 0.70 nm/s^2

University of Bremen

With Modeled Accelerations

- Residuals between POD calibration and modeled accelerations
- Scale factor
 - monthly
 - 7 days
 - 1 days

University of Bremen

With Modeled Accelerations

- Residuals between POD calibration and modeled accelerations
- Scale factor
 - monthly
 - 7 days
 - 1 days
 - 3 hours
 - 3 hours GFR

With Modeled Accelerations

- Residuals between POD calibration and modeled accelerations
- Scale factor
 - monthly
 - 7 days
 - 1 days
 - 3 hours
 - 3 hours GFR
- Observation data
 - GNV
 - GNV + KBR
 - KOS

With Modeled Accelerations

- Residuals between POD calibration and modeled accelerations
- Scale factor
 - monthly
 - 7 days
 - 1 days
 - 3 hours
 - 3 hours GFR
- Observation data
 - GNV
 - GNV + KBR
 - KOS
- Post-processing
 - bias **not** filtered

With Modeled Accelerations

- Residuals between POD calibration and modeled accelerations
- Most promising accelerometer calibrartions
 - No scale
 - Const. scale, ITSG
 - Monthly scale ITSG
- Opposing trends
- Residuals are in range of anticipated modeling errors → validation not possible
- Final results: Monthly and const. scale, 3h, bias, ITSG gravity, GNV observations, low-pass filter of bias

modeled accelerations (est. daily bias)

Final Calibration

- Weighted const. scale for 2 periods or monthly scale
- 3h bias, low-pass filtered
- GNV observations, monthly ITSG models

Summary

- POD accelerometer calibration for GRACE A, B and GRACE-FO C
- Estimated density, all single modeled non-gravitational accelerations and auxiliary data are available for whole missions
- https://zarm.uni-bremen.de/zarm_daten/
- Different sensitivity in of POD in different axes
- POD is not sensitive enough in y- and z-direction for a physical ACC calibration
- Re-calibration of y- and z-axis with modeled data by daily bias
- POD position residuals are not suitable to validate calibration results
- Validation of results complicated
- Additional material uploaded
- Paper submitted to ASR

