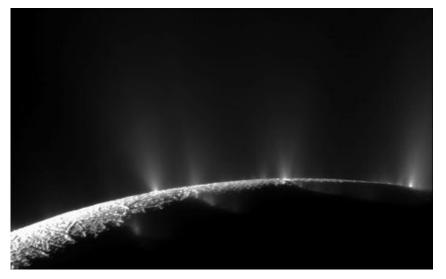
Optimising Thermal Mapping Instrument Filters to Unveil Enceladus' Subsurface Secrets

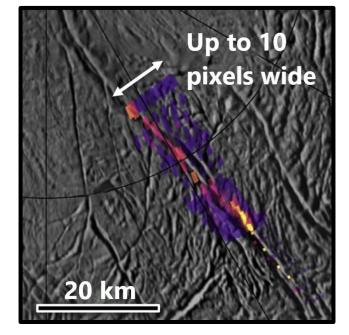
Duncan Lyster | Supervisor: Dr. Carly Howett

In Collaboration with: Drs. Neil Bowles, Rory Evans, Tristram Warren, and Keith Nowicki


University of Oxford

EGU Abstract

Background and Importance - Enceladus


- Small (252 km radius) moon of Saturn, with a global ocean beneath its icy crust
- The South Pole 'tiger stripes': fractures erupting water vapour and organic compounds
- Astrobiology potential could Enceladus host life?

Plumes erupting from Enceladus [NASA/JPL-Caltech/Space Science Institute]

Previous Mapping Work & Its Limitations

- Thermal data from Cassini's Infrared Spectrometer (CIRS)
 - Few high-spatial resolution observations
 - Sparse south polar coverage
- Results showed:
 - Fractures vary in temperature

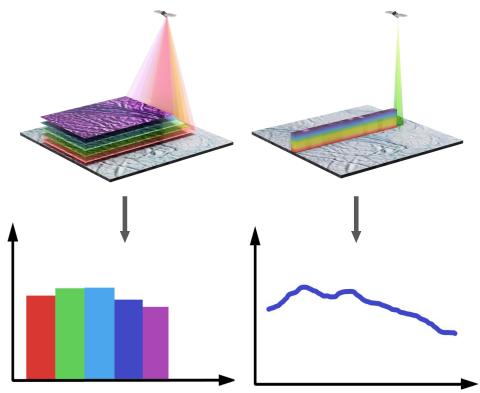
Cassini Thermal Map [NASA/JPL/GSFC/SWRI/SSI (2010)]

The Enceladus Thermal Mapper (ETM)

- Multi-band radiometric instrument
- High TRL (LTM and MIRMIS/TIRI)
- Now need to consider a very cold target (30K)
 - Longer wavelengths necessitate

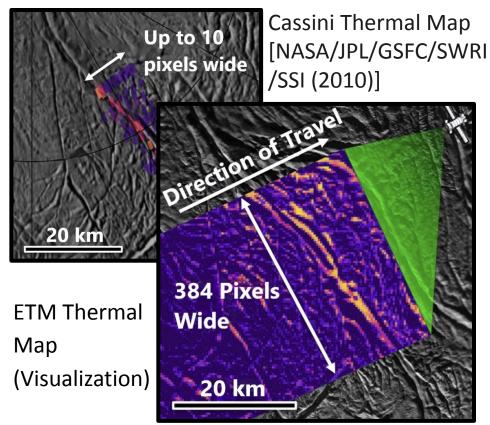
different filter profiles

The Enceladus Thermal Mapper


Radiometric Thermal Mapping vs. Spectroscopy

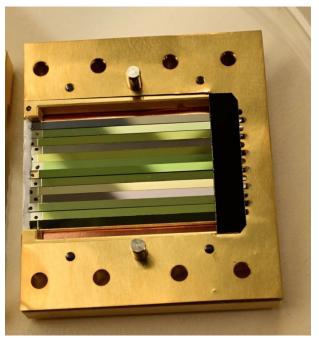
• Multispectral mapping:

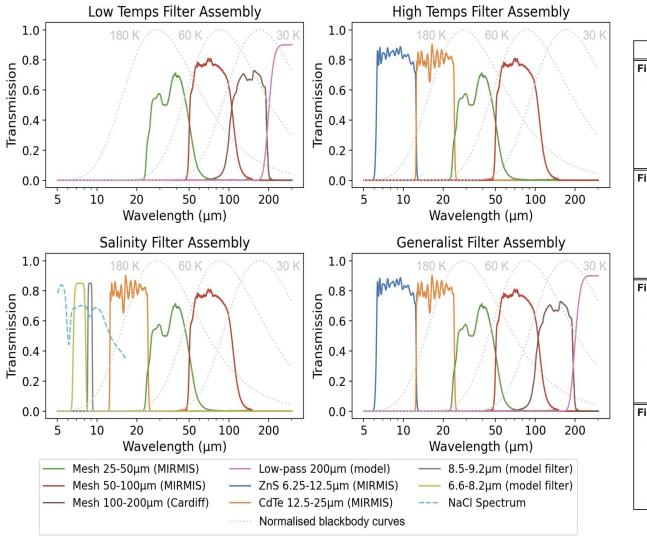
High spatial resolution


• Spectroscopy:

High spectral resolution

ETM's Technical Adaptations

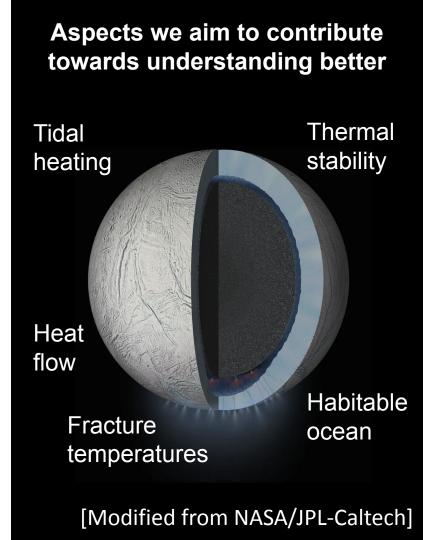

- A follow-on from Cassini
 CIRS to map Enceladus'
 thermal properties.
- Performance depends on orbit, but at 150 km:
 - \circ 80 m per pixel
 - 31 km wide track.


Instrument Modelling and Filter Selection

 Optimise filter performance to be sensitive to a range of target temperatures

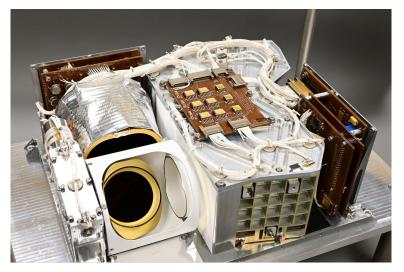
• Trade-offs & limitations

The Filter Assembly from Lunar Thermal Mapper



Signal to Noise Ratios

	-					
Low Temps						
ilter	Description	Width (px)	30K	60K	180K	200K
3	Mesh 25-50µm	92	0.1	10	637	820
4	Mesh 50-100µm	92	3.5	66	837	994
5	Mesh 100-200µm	92	12	76	466	536
6	Low-pass 200µm	92	15	56	244	276
High Temps						
ilter	Description	Width (px)	30K	60K	180K	200K
1	ZnS 6.25-12.5µm	92	0.0	0.0	24	51
2	CdTe 12.5-25µm	92	0.0	0.4	302	466
3	Mesh 25-50µm	92	0.1	10	637	820
4	Mesh 50-100µm	92	3.5	66	837	994
Salinity						
ilter	Description	Width (px)	30K	60K	180K	200K
2	CdTe 12.5-25µm	60	0.0	0.4	244	376
3	Mesh 25-50µm	60	0.1	8.2	515	662
4	Mesh 50-100µm	60	2.8	54	676	803
7	8.5-9.2µm	60	0.0	0.0	1.3	3.1
8	6.6-8.2µm	120	0.0	0.0	1.3	3.7
Generalist						
ilter	Description	Width (px)	30K	60K	180K	200K
1	ZnS 6.25-12.5µm	60	0.0	0.0	19	41
2	CdTe 12.5-25µm	60	0.0	0.4	244	376
3	Mesh 25-50µm	60	0.1	8	515	662
4	Mesh 50-100µm	60	2.8	54	676	803
5	Mesh 100-200µm	60	9.4	61	376	432
6	Low-pass 200µm	60	12	45	197	223

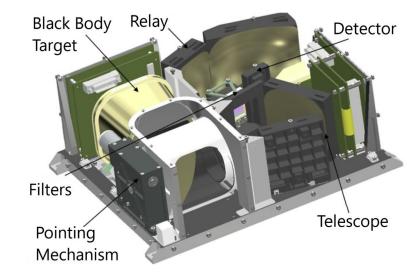

Project Aims and Relevance to Science Goals

- Enceladus' geothermal activity
- Global surface properties through precise temperature measurements.
- Constrain global conductive heat flow: consistent with long-term solutions? (required for habitability)

Conclusions and Future Work

- Multi-band radiometric instrument to map day, night, polar winter, and fracture temperatures.
- Instrument model: Simulating ETM observations to optimise filter selection for mission goals.

The Lunar Thermal Mapper



Filters Model

Thermal Model

Instrument specs

- IFOV with 35 µm pitch INO detector is ~540 µrad per pixel
- Mass = 4.5 kg with margin (actual pFM mass 3.8kg)
- Power = 6 W average, ~12 W peak
- Volume 262.5 x 214 x 100mm excluding MLI blankets
- Internal 1 GB storage
- RS422 power connector
- Internal calibration target and space view for radiometric calibration
- 28V nominal voltage

The Enceladus Thermal Mapper

 $SNR = \frac{D^* \sqrt{A_d} \Omega_d \int \tau \epsilon_s B_\lambda(T_s) \, d\lambda}{SNR}$ \sqrt{f}