The microphysical origin of tropical cirrus

Blaž Gasparini, Peter Blossey, Rachel Atlas, Martina Krämer & Aiko Voigt

wien wien

Funded by the European Union

NASA/ISS

Tropical cirrus of two sources: convection and ice nucleation

Blaž Gasparini

SAM cloud-resolving model with improved ice microphysics has a good skill in simulating tropical cirrus

What is a simple way to tell the origin of cirrus clouds?

Are icy cirrus relevant for the radiative budget at TOA?

TOA = top-of-the-atmosphere

Passive tracers: a simple, inexpensive method to track cloud evolution

Time after detrainment

Time after nucleation

Classifying cirrus origin with the help of passive tracers

Sometimes ice nucleation occurs within anvils!

5

icy cirrus if

time after nucleation

< time after detrain. Time after nucleation

anvil cirrus: if time after detrainment > time after nucleation

Classifying cirrus origin with the help of passive tracers

Sometimes ice nucleation occurs within anvils!

icy cirrus if t nucl<t detr & t detr>30 h

mixed: anvils, where in situ ice nucleation present (but detrained ice mass dominant)

anvil cirrus: all within 30 h of time after detrainment with no new in situ nucleation

5 2

6

Do we need to consider **icy cirrus** to represent the tropical TOA energy balance?

The contribution of **icy cirrus** is for the TOA budget is not negligible

The journey of ice crystals from deep convection to thin cirrus

The journey of ice crystal from deep convection to thin cirrus

occurrence frequency for all tropical cirrus at T<-40°C

10

stal from deep C

thin cirrus

The journe

Summary

- 1. Icy cirrus should not be neglected in the radiative budget at the top-of-the-atmosphere
- 2. Tracers are an easy way to track evolution of cloud properties
- ➔ How to connect it more to observations?

blaz.gasparini@univie.ac.at

The journey of ice crystal from deep convection to thin cirrus

Clouds at IWP < 10^{-1} g m⁻² are irrelevant for the radiative balance

Frequency 0.02 **SAM** model 0.00 10^{-2} 10^{-3} 10⁰ 10² 10³ 104 10^{1} -1 10 100 CRE [W m⁻²] 0 -100-200 -300 10^{-2} 10^{-3} 10⁰ 10² 104 10¹ 10³ 10 CRE [W m⁻²] 2 1 0 Frequency x $^{-1}$ -2 -3 10^{-1} 10² 104 10^{-3} 10^{-2} 100 10¹ 10³ IWP [g m⁻²]

contribution to the CRE is negligible for IWP < 0.1 g m⁻² (COD < 0.03)

Blaž Gasparini

Even thin TTL cirrus can substantially change CRH

Cloud radiative heating drives large-scale dynamics and its response to global warming (e.g. Voigt et al., 2021, Dinh et al., 2023) and mesoscale circulations (e.g. Gasparini et al., 2022)