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Abstract:
Tropical cyclones (TCs) are extremely dangerous and destructive events that pose a

threat to human life every year. Since the beginning of the meteorological observation era,
predicting the behavior of cyclones has always been an issue. It has been proven that with
climate change due to global warming, the proportion of stronger TCs increases, increasing
the danger and potential harm of TCs.

Numerous techniques have been developed over the years and are used in ensembles
to detect, predict and classify TCs. Nevertheless, the tasks in the field of TC prediction are
considered challenging because the development of TC systems exhibits nonlinear behavior
and depends on many environmental factors.

Traditional DL prediction methods are computationally intensive and require a rela-
tively large amount of energy and time. Due to ongoing global warming, the behavior of TCs
may constantly change and therefore requires the use of modern, environmentally friendly
and more flexible learning methods for estimating and predicting the future behavior of
TCs.

In recent years, the study of the application of deep learning (DL) methods in this
area has proven to be very effective. These methods are designed to facilitate the forecasting
process and automatically detect and adapt to possible trends that may arise over time.
DL methods are able to strengthen the ability to predict based on actual behavior and take
into account the evolution of recent trends in the movement and intensification of TCs.

DL methods are not intended to replace conventional modeling and prediction meth-
ods and cannot replace them because conventional methods deal with the actual formulation
of physics, while DL methods provide the most modern statistical analysis and can thus
exert their influence on research.

In our research, we have applied a novel approach of incorporating two-dimensional
meteorological data to forecast the track and intensity of TCs. We have built and tested
numerous sequence-to-sequence forecasting models based on ConvLSTM2D neural network
layers and tested two-dimensional data compression using autoencoders as a data prepara-
tion technique. Our experiments have shown that the multivariate forecast yields perspec-
tive results. However, further research is required to address the nature of rare events, such
as rapid intensification and sudden track change. We have also succeeded in detecting the
influence of recent trends in TC behaviour changes in recent years and proved the ability
of neural networks to fit themselves to those trends.

Keywords: Tropical Cyclones · Deep Learning · ConvLSTM2D · Sequence-to-sequence
· Autoencoderes
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Kurzfassung:
Tropische Wirbelstürme (TCs) sind extrem gefährliche und zerstörerische Ereignisse, die

jedes Jahr eine Gefahr für Menschenleben darstellen. Seit dem Beginn der meteorologischen
Beobachtungsära war die Vorhersage des Verhaltens von Wirbelstürmen immer ein Thema.
Es ist erwiesen, dass im Klimawandel aufgrund der globalen Erwärmung der Anteil der
stärkeren TC, zunimmt, wodurch die Gefahr und der potenzielle Schaden von TCs steigen.

Zahlreiche Techniken wurden im Laufe der Jahre entwickelt und werden in Ensembles
eingesetzt, um TCs zu erkennen, vorherzusagen und zu klassifizieren. Dennoch werden die
Aufgaben im Bereich der TC-Vorhersage als herausfordernd angesehen, da die Entwick-
lung von TC-Systemen ein nichtlineares Verhalten aufweist und von vielen Umweltfaktoren
abhängt.

Herkömmliche DL-Vorhersagemethoden sind rechenintensiv und erfordern einen rel-
ativ hohen Energie- und Zeitaufwand. Aufgrund der fortschreitenden globalen Erwärmung
kann sich das Verhalten von TCs ständig ändern und erfordert daher den Einsatz moderner,
umweltfreundlicher und flexiblerer Lernmethoden für die Abschätzung und Vorhersage des
zukünftigen Verhaltens von TCs.

In den letzten Jahren hat sich die Untersuchung der Anwendung von Deep Learning
(DL)-Methoden in diesem Bereich als sehr effektiv erwiesen. Diese Methoden wurden en-
twickelt, um den Vorhersageprozess zu erleichtern und mögliche Trends, die im Laufe der
Zeit auftreten können, automatisch zu erkennen und sich an sie anzupassen. DL-Methoden
sind in der Lage, die Fähigkeit zur Vorhersage auf der Grundlage des tatsächlichen Ver-
haltens zu verstärken und die Entwicklung der jüngsten Trends bei der Bewegung und
Intensivierung von TCs zu berücksichtigen.

DL-Methoden sind nicht als Ersatz für konventionelle Modellierungs- und Vorher-
sagemethoden gedacht und können diese auch nicht ersetzen, denn die konventionellen
Methoden befassen sich mit der eigentlichen Formulierung der Physik, während die DL-
Methoden die modernste statistische Analyse bieten und so ihren Einfluss auf die Forschung
ausüben können.

In unserer Forschung haben wir einen neuartigen Ansatz angewandt, der zweidi-
mensionale meteorologische Daten zur Vorhersage der Zugbahn und Intensität von TCs
einbezieht. Wir haben zahlreiche Sequence-to-sequence Vorhersagemodelle auf der Grund-
lage von ConvLSTM2D-Netzschichten entwickelt und getestet und die zweidimensionale
Datenkomprimierung mit Hilfe von Autoencodern als Datenaufbereitungstechnik erprobt.
Unsere Experimente haben gezeigt, dass die multivariate Vorhersage aussichtsreiche Ergeb-
nisse liefert. Es sind jedoch weitere Forschungen erforderlich, um die Natur seltener
Ereignisse, wie z. B. eine schnelle Intensivierung und plötzliche Zugveränderungen, zu
berücksichtigen. Es ist uns auch gelungen, den Einfluss der Trends bei den Veränderungen
des TC-Verhaltens in den letzten Jahren zu erkennen und die Fähigkeit der neuronalen
Netze zu beweisen, sich an diese Trends anzupassen.

Schlüsselwörter: Tropical Cyclones · Deep Learning · ConvLSTM2D · Sequence-to-
sequence · Autoencoders
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Chapter 1

Introduction

1.1 Problem statement

The process of weather forecasting includes many technical processes and human-taken
decisions. It is believed that the atmosphere has a high degree of randomness, and un-
derstanding atmospheric processes needs to be improved. This initially makes the whole
weather forecast process very complex and challenging. It starts with collecting observation
data from different sources, like surface observations, satellite sensors and imagery, aircraft
missions, radars, radiosondes, offshore buoys, ships at sea and others. Then, the collected
data is used to run weather simulations, construct reanalysis and update climate simula-
tions. In the end, the various results are combined and examined by professional forecasters
who, in turn, apply a pattern recognition process to it. The whole process consists of many
other complex sub-processes. It depends on the ability to collect data, interpolate the miss-
ing gaps, model the behavior of the atmosphere in the correct way and derive decisions
based on human expertise.

The tasks in the field of TC forecasting are perceived as especially challenging, be-
cause the development of TC systems features non-linear behavior [12] and depends on
many environmental factors. Numerous techniques were developed throughout the years
and are used in ensembles with weather simulations to detect, forecast and classify TCs.
Conventional TC forecasting methods are computationally intensive and require a relatively
large amount of energy and time.

Existing studies show, that due to the ongoing global warming, certain changes in TC
behavior take place. For example, in the North Atlantic and North Pacific basins, TCs move
to the north [22]. There is also an increase in the proportion of strong TCs of category 4
and 5 at a rate of between 25% and 30% per °C of global warming, balanced by a decrease in
proportion of category 1 and 2 TCs among all ocean basins [7]. Moreover, it has been shown
that there is a recent upward trend in Rapid Intensification (RI)1 rates[10]. The observation
of this trend is sometimes attributed to the improvement of the observation technology[19]
and not related to the local atmospheric environment, but the warming ocean[20] and global
warming still might be the reason. [1] show that the upward trend is positively correlated
with anthropogenic forcing in multiple TC basins. The behavior of TCs may keep changing

1RI is defined as the 95th percentile of over-water 24-h intensity changes[9], which corresponds to an
increase of the wind speed of at least 30 knots or 55 km/h.
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and even increase, therefore require the use of modern, environment-friendly, and more
flexible learning methods for estimation and forecasting.

DL methods are empowered to enforce the ability to forecast, based on actual observed
behavior, and consider the development of the most recent trends in changes of tracks
and intensification of TCs if the data is up to date and abundant. They are intended
to be different from conventional modelling and forecasting methods because conventional
methods deal with the formulation of physics and precise understanding of relationships of
different atmospheric factors. However, DL Methods have the potential to have a significant
impact on climate and weather research because they provide the most modern statistical
analysis. Ultimately, these two approaches can component themselves by being used in
conjunction as a hybrid model that takes physics and data analytics into account.

1.2 Nature of Tropical Cyclones

Basic characteristics of the TC formation process are playing a central role in the explanation
of the chosen data and methods in our work. There are several weather conditions which
create favourable, but not sufficient conditions for the formation of a Tropical Cyclogenesis
2:

• Warm oceans with sea surface temperature higher than 26.5°C up to a depth of at
least 45 meters and a cool atmosphere above it, so the difference in temperatures
creates thunderstorm conditions.

• High humidity in the mid-troposphere (700 hPa3) is needed to preserve the circulation.

• Location of the storm of at least 500 km away from the equator, where the Coriolis
force4 is strong enough to deflect the movement of a TC, so the rotation is strong
enough to develop a low pressure center.

• Low vertical wind shear. Wind shear is a difference in wind speed or direction, in our
case between the surface and the upper troposphere. Low vertical wind shear allows
convection of the air between different altitudes. High wind shear will disturb the
convection.

When these conditions occur, it is likely that a TC system will form and evolve. Basic
characteristics of this process is what we are going to forecast in our work. The following
steps in formation of a TC5 are conventionally being referenced to:

1. Tropical disturbance:
Water evaporates from the warm ocean and raises as a column of clouds. When the
air gains altitude it cools down and falls, starting to rotate.

2National Oceanic Atmospheric Administration (NOAA). (2023, June 1) Hurricanes FAQ, How do Trop-
ical cyclones form? https://www.aoml.noaa.gov/hrd-faq/#tc-formation

3The standard air pressure at sea-level is 1013.25 hPa. The pressure of 700 hPa usualy corresponds to
the altitude of 3012 meter above the sea level.

4Britannica: The effect of the Coriolis force is an apparent deflection of the path of an object that moves
within a rotating coordinate system. It is equal 0 at the equator and is maximal at the poles.

5NOAA. (2023, July 3) How Does a Hurricane Form? https://scijinks.gov/hurricane/
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2. Tropical depression (Wind speed 40-61 km/h):
Warm air at high altitude causes high pressure that causes the winds to move outward.
That makes the pressure at the surface drop. Air at the surface moves to the low
pressure area, rises and intensifies the system.

3. Tropical storm (Wind speed 62-119 km/h):
The wind begins to twist around the eye center due to the Coriolis force.

4. Hurricane (Wind speed > 119 km/h):
The storm is at least 15 km high and around 200 kilometers across. The eye is around
9 to 55 km wide. Trade winds which blow from east to west at the North Atlantic
Basin push TCs to the Gulf of Mexico. The winds and the low pressure cause the
water level in the eye to rise, which makes the landfall more dangerous because of the
amount of water.

5. Decay:
Hurricanes weaken once they have reached a landfall, because they don’t have the
support of warm waters to feed energy and the friction with the ground increases.
They also weaken when they reach middle latitudes with cool sea surface temperature
and strong wind shear that breaks the circulation.

One of the common ways to categorize Hurricanes and their potential damage is the Saffir-
Simpson Hurricane Wind Scale. The scale ranks hurricanes into five categories based on
their sustained wind speeds:

• Category 1: Wind speeds of 119-153 km/h. Potential damage to weak buildings, signs,
trees and some damage to power infrastructure.

• Category 2: Wind speeds of 154-177 km/h. Damage to building windows and power
outages for up to several days.

• Category 3: Wind speeds of 178-208 km/h. Severe damage to weak constructions and
uprooted trees. Power outages for up to several weeks.

• Category 4: Wind speeds of 209-251 km/h. Some roof failures and severe damage to
windows and doors.

• Category 5: Wind speeds of 252 km/h or higher. Complete roof and building failures.
Total damage to power infrastructure with outages lasting for several months.

Category 4 and 5 hurricanes are considered major hurricanes due to their destructive po-
tential and the widespread damage they can cause.
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Chapter 2

Literature Overview

This section reviews previous work on closely related Deep Learning (DL) tasks in the
field of TCs and investigates the advantages or disadvantages of different methods. It also
introduces literature related to the Neural Network (NN) techniques, which we are going
to use in our work.

The research of application of DL methods in the field already uses a variety of
NN models and supplementing techniques. The uses are mainly divided into two tasks.
Classification of data snapshots for the presence or absence of TC, which is mainly han-
dled with Computer Vision NNs: Convolutional Neural Network (CNN) [2], YOLOv3 [14],
DeepLabv3+ [15], and a track prediction task, with the application of Recurrent Neural Net-
works (RNN) [13], Long Short-Term Memory (LSTM) [25], Gated Recurrent Units (GRU)
[25], Generative Adversarial Networks (GAN) [17], sometimes combined with CNN for fea-
ture extraction [25] [16].

In the reviewed literature for solutions to classification tasks, authors use combina-
tions of data sources such as meteorological reanalysis, satellite imagery, and historical track
records. Meanwhile, for track prediction, the use of meteorological or imagery data is rare,
and in most cases, they use only historical track records.

In our work, we would like to combine the knowledge from both DL tasks and use
technology and the advantages of computer vision to build a strong forecasting method.
Therefore, we conduct our final methodology from different DL tasks.

2.1 Choice of the DL task and data

2.1.1 Gardoll and Boucher [2]

The first article considers the performance and sensitivity of a CNN binary classifier to
the learning dataset. The authors accurately document their data preparation process,
including producing a Python library to help organize datasets in order to present an easily
repeatable way of handling the problem in order to help future research. The training
labels are images centred on the cyclone positions, combining HURDAT21 hurricane tracks

1US National Oceanic & Atmospheric Administration Reanalysis Hurricane database V.2.

5
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dataset with measures from ERA52 and MERRA23 meteorological reanalysis. Background
images sample locations and times similar to the TC-containing images and do not include
any TC by construction.

Their model showed very accurate results in using a very short time to train. Their
research question was to compare the influence of the choice of training dataset vs. pre-
diction dataset. This question is out of our scope. So, we will not consider investigating
it. However, we find their choice of datasets very reasonable and modern because the me-
teorological reanalysis databases provide consistent and complete data on multiple weather
variables. Datapoints are distributed on a high-resolution grid and provide a map with
no gaps. One of the purposes of these datasets is to train weather models, with which
numerical forecasting methods are initialized4. The use case corresponds to the main idea
of our work, which is to use various data and implement and improve an NN pipeline that
predicts an informative forecast.

2.1.2 Ren et al. [16]

The second article deals with the track prediction of typhoons formed in the South China
Sea. A C-LSTM model is implemented as a combination of CNN and LSTM. The data
used was the best track set of typhoons IBTrACS 5 in the northwest Pacific Ocean, which
includes positional and meteorological variables.

First, the authors describe precisely the data preparation and cleansing process and
apply the Granger Causality Test to select the variables with more significant influence
on typhoon tracks to reduce the dimensionality and clean irrelevant data. The authors
group the data of longitude, latitude, and 7 chosen meteorological variables into time series
sequences of a fixed length of 20 samples per typhoon. For each typhoon sequence, they
group every five data samples into a matrix and determine the subsequent matrices using
the sliding window method. In the NN architecture, convolutional layers extract feature
vectors from the input data, and LSTM layers learn temporal features and output the
location of the TC system for the next time step.

This work concludes that CNN layers help drastically to improve the performance of
LSTMs.

2.1.3 Wang et al. [25]

Wang et al. present a brief history of the application of DL methods in the field of TC
forecasting and propose a new method of TC track forecast based on a combination of
CNN and GRU. They use combined data from the IBTrACS track dataset for the Northwest
Pacific Ocean and ERA5. The authors bring to a test 19 movement characteristics extracted
from IBTrACS to discover which are the most meaningful. Based on the field knowledge,

2European Centre for Medium-Range Weather Forecasts, Reanalysis V.5.
3US National Aeronautics and Space Administration, Modern-Era Retrospective analysis for Research

and Applications V.2.
4ECMWF. (2019, October). Use of ERA5 reanalysis to initialise re-forecasts proves ben-

eficial. https://www.ecmwf.int/en/newsletter/161/meteorology/use-era5-reanalysis-initialise-re-forecasts-
proves-beneficial

5US National Oceanic & Atmospheric Administration International Best Track Archive for Climate Stew-
ardship data.
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they choose from ERA5 the following variables: U and V components6 of the wind at four
pressure altitudes7, Sea Surface Temperature, and Geopotential Height8 at three pressure
altitudes.

The authors perform sequence-to-sequence forecasting, taking information from the
first 24h of TC development and predicting the next 6h-72h. Train (1979-2014), validation
(2015-2018) and test (2019-2021) sets are divided by years, without shuffling and TCs that
exist for more than 96h are removed from the data.

First, the authors implement basic RNN, LSTM, and GRU models and compare the
11 most important movement features. The GRU model shows the best result with a slight
advance over the LSTM.

Then, a combined network, GRU_CNN, was presented. The architecture features
four separate data streams for the variables: the meteorological variables go through CNN
networks with alternating max-pool and convolutional layers, and IBTrACS scalar data
goes through a sequence of two stacked GRU layers. The outputs of each data stream go to
separate dense layers, get concatenated, and are merged through an additional dense layer.
All layers are normalized with batch normalization, which, according to [8], accelerates the
training of NNs and helps with the vanishing or exploding gradient problem. The authors
justify using different data branches, because of the chosen different dimensionality of the
ERA5 variables and the different nature of the variables requiring different learning rates.

The GRU_CNN network enhances the performance compared to their basic and
competitive models. It also outperforms the Central Meteorological Observatory 6h-126
short-term forecasts. Separate training shows that the U and V components of the wind
were the most significant 2D variables and played a dominant role in the <24h forecast.
The results in this time range are similar to that of a model trained on all meteorological
variables. Adding Sea Surface Temperature and Geopotential Height improved gradually
48h-72h mid-term forecasts.

Further variables such as cyclone intensity, rainfall, and wind speed are proposed to
be used for prediction in future research.

The paper concludes that it is essential to enlarge the number of prediction variables
to make the approach applicable in real life and suggests to consider further variables such
as cyclone intensity, rainfall, and wind speed. Therefore a set of variables, similar to the
work of Gardoll and Boucher [2], could indeed be meaningful and bring an improvement.

2.1.4 Rüttgers et al. [17]

The work of Rüttgers et al. caught our interest due to the use of an advanced neural network
and pure satellite photos, especially the ability to predict cloud formation, which gives a
better natural picture for real-life forecasting. The work uses satellite imagery (photos) and
GAN to implement a track and cloud formation prediction.

6Positive U component of the wind comes from the west, negative from the east. V component positive
comes from the south and negative from the north.

7Pressure altitude is the height above a theoretical level of Earth’s surface, where the air pressure is
1,013.2 bar.

8Geopotential Height is a vertical coordinate referenced to Earth’s mean sea level that represents the
work involved in lifting one kilogram of mass over one meter of height with constant acceleration of gravity.
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The results of this work propose that satellite imagery is insufficient to predict the
tracks in an applicable manner. This reinforces our choice of reanalysis data.

The work inspires us to face the ability to produce a combined forecast that features
additional characteristics of the TC system, like intensity or size, which might be necessary
to understand how large the affected territories and the danger are, thus being essential
for a real-life forecast. The HURDAT2 dataset possesses information on the size of TCs
since 2014, provided by variables: wind radii maximum extent and radius of maximum
wind. Intensity is provided by the variables: maximum sustained wind (in knots), and
minimum pressure (in millibars). We are interested in predicting a subset of those values
to approximate TC severity.

2.1.5 Olander et al. [13]

The authors are using Advanced Dvorak Technique (ADT) combined with DL methods to
predict TC intensity by providing maximum sustained surface wind speed. They use ADT
history imagery and satellite imagery and estimate the performance of a classification NN
model. Through the work, a comparison to the conventional ADT algorithm and its error
estimation is performed.

This work utilizes the Dvorak technique, a proven field knowledge technique based
on a classification decision tree. ADT brings a pretty good estimate of TC intensity and
is still used, for example, by NOAA9, which utilizes satellite visible and infrared imagery.
The technique was first introduced in 1969, performed by human analysts, and applied only
in the northwest Pacific Ocean. Later, in 1998, an objective method run by computers was
developed.

The work trains the NN on five TC basins, which is essential because the ADT
classification is different between basins, and the method should have been reinitialized in
the past to be used in new regions. Several architectures are compared: RNN with a single
neuron output layer, multi-classification NN with multiple neuron output layer containing
a probability distribution. Both variants provided similar accuracy characteristics.

The NNs in the work are relatively simple as to the current day and possess up to
128 neurons. Nevertheless, it still provides a significant improvement in success rates in
comparison to the conventional ADT method.

2.1.6 Comparison of the reviewed articles, by DL Task.

This section summarises the literature overview and outlines its exploratory character. Ta-
ble 2.1 summarizes the basic information about it.

The first article [2] introduces a well-structured approach to data preparation and an
introduction to the task of identification of the TC system using a binary classifier. The
classification task in the field has appeared as already well explored using DL methods, so
we focused on the more complicated task of track prediction discussed in the following three
articles [16] [25] [17], from which we learn about the high impact of a combination of feature
extraction and memory-based NNs. In the last two articles [17] [13], we are presented with

9Hurricane FAQ. (2022, August 17). NOAA’s Atlantic Oceanographic and Meteorological Laboratory.
https://www.aoml.noaa.gov/hrd-faq/
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Article DL Task Datasets Architecture
Gardoll and
Boucher [2]

Compare perfor-
mance, sensitivity
of a CNN to learn-
ing dataset

HURDAT2,
MERRA-2, ERA5

CNN binary classi-
fier

Ren et al. [16] Typhoon track pre-
diction

IBTrACS C-LSTM

Wang et al. [25] TC track predic-
tion

IBTrACS, ERA5 RNN, LSTM,
GRU, GRU_CNN

Rüttgers et al. [17] Typhoon track and
cloud structures
prediction

Satellite images
(VISSR)

GAN

Olander et al. [13] TC maximum sus-
tained surface wind
speed prediction

Satellite images
(VISSR)

RNN

Table 2.1
DL task and architecture across the literature.

the combined task of track and intensity prediction, which seems to be the most advanced
task today.

2.2 NN architectures.

2.2.1 Hochreiter and Schmidhuber [6]

The authors of [6] introduced the LSTM as a new type of RNN network in 1997. It serves
the target of remembering recent input events using feedback connections, passing the in-
formation to the next execution step of the layer. They define this process as Short-Term
Memory, as opposed to the learning process of NN in which neuron weights are gradually
changing, which they refer to as Long-Term Memory. LSTM has solved the problem of
vanished or exploding gradient, which existed at other implementations of the Short-Term
memory method using RNNs. They have achieved the advantage due to advanced architec-
ture that enforces constant error in the Hidden States by Constant Error Carousel (CEC).

LSTM is a type of RNN network and features a bi-directional learning flow. That
means that output from some nodes influences subsequent input to the same nodes. The
memory cell of LSTM is a more complex network than RNN and features the Input, Forget
and Output Gates, the Hidden State, Cell State and the output node. Hidden State keeps
the Short-Term Memory information; it is updated at every step and propagates its infor-
mation to the next step. The Cell State interacts with the gates, regulates their influence
on the information that flows through the memory cell and retains long-term dependencies
in the sequence data. The input gate uses input data and the Hidden State and applies
an activation function in order to decide how much information from the previous Hidden
State will be remembered in the memory cell. Forget Gate controls how much of previous
memory should be forgotten and is the modern implementation of the CEC. The Output
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Gate controls how much the Hidden State should influence the next Hidden State and how
much it should influence the current time step’s output, which is the prediction of the cell.

The LSTM network was shown in the [6] to be able to retain the Short-Term Memory
effect for over 1000 steps; lThere seems to be a common believe that later later applications
show that LSTMS can solve tasks that require Short-Term Memory even for more than
millions of execution steps. The mean number of TC observations in the HURDAT2 dataset
in 1970-2021 is 27, and the maximum is 118. So, we expect that LSTM will be able to retain
Short-Term Memory easily during the training or prediction process. The use of LSTM can
help significantly in achieving our goal.

2.2.2 Shi et al. [18]

An alternative to common LSTM, which utilizes 3-dimensional data of time, rows, and
columns, was introduced by [18]. The paper deals with the problem of precipitation now-
casting in a local region. Nowcasting is a type of weather forecasting that operates in a
very short time range from 0 to 6 hours. This task is a novel approach because conventional
Numerical Weather Prediction (NWP) methods produce longer-term forecasts. Authors
compare the results of their method with the current state-of-the-art NWP nowcasting
method ROVER[26].

The paper formulated the problem as a spatiotemporal sequence to sequence predic-
tion and solved it. The proposed version of the LSTM memory cell features 3D tensors
as the inputs, the outputs, the hidden states, and all the memory cell gates. It uses the
Hadamard product10 on Cell Outputs and Convolutional Operator on the input-to-state
and state-to-state transitions instead of matrix addition and multiplication, compared to
regular LSTM. By doing so, ConvLSTM determines the next state of the Hidden State not
only by the inputs and the sequence of previous Hidden States but also by local neighbours
of the Hidden States. The authors use zero padding in convolutional operations to keep the
initial dimension of the data and avoid making assumptions about out-of-the-scope space.
The trained NN architecture is based on temporally connected LSTM encoder and decoder
layers, which was introduced for sequence-to-sequence prediction by [23]. Several LSTM
layers are stacked together, following [21], and the Hidden States and outputs of the decoder
network are initialized with the values of the Hidden States and outputs from the encoder
network. The final forecast is given by a 1 × 1 convolutional layer receiving all the states
of the decoder network. In this architecture, the encoder network does not pass a sequence
to the decoder network, and the decoder network does not produce the output sequence by
itself.

The authors evaluate their NN on a synthetic Moving-MNIST dataset [21] against
Fully Connected LSTM (FC-LSTM)[3] and outperform it by an improvement of 24% of
cross-entropy metric. The authors also evaluate their model on real-life radar echo dataset
and outperform the state-of-the-art operational ROVER algorithm by an improvement of
17% and outperform FC-LSTM by 24% of Rainfall Mean Squared Error (Rainfall-MSE).

10Wikipedia: Hadamard product is a binary operation that takes in two matrices of the same dimensions
and returns a matrix of the multiplied corresponding elements.
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The use case described in the paper, as well as the type of data, is very similar to
our DL task. Therefore, we would like to utilize the proposed NN layer and investigate the
performance of different model architectures.
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Chapter 3

Research Questions

In this study, we construct a pipeline that receives time and location series data from
meteorological reanalysis to produce a forecast for TC system development, including the
trajectory and intensity changes over time. The goal is to build and output a visualization
of the future evolution of the TC system and predict a point for a landfall location.

While track prediction has already been proven to work well with DL approaches, the
prediction of intensity is still rarely implemented using DL methods. Conventional intensity
prediction is considered a hard task [24] in the field of TC forecasting. It is so because of the
natural complexity of the meteorological conditions as well as an increase in the proportion
of intense TCs and RIs, as described earlier. The occurrence of RI events is by itself a
reason for error in forecasts; according to [24], rapid changes in intensity in both directions,
explain about 20% of the variance of forecast errors in the Atlantic and 30% in the east
Pacific.

The combination of meteorological 2D data for trajectory forecast of TCs is a rela-
tively novel approach with only a few occurrences in the literature and from only a recent
period. For example, [25] have proved the positive effect of using Sea Surface Temperature
and Geopotential Height meteorological variables to gradually improve the TC trajectory
prediction in mid-term forecasts of 24h-72h.

We test the ability to predict compound sets of variables of different dimensions.
We use scalar data from HURDAT2 and 2-dimensional meteorological data from ERA5
datasets and inspect the possible improvement compared to partial sets of those variables.
For improvement of the forecast, we bring to a test four different NN architectures based
on ConvLSTM2D Tensorflow (TF) layers.

A further research question that this work addresses is to detect the influence of global
warming and changes in the behavior of TCs on the training process and the forecasting
abilities of our model. We inspect the changes in forecasting error of location and intensity,
depending on the choice of train and test sets. We expect that if we take more recent years
as test data and omit the ’year’ variable, we will face an increase in error in the prediction of
intensity and an increase in error in the prediction of latitude towards northern observations.

13
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Summarizing the above mentioned topics, the research questions for the study are
the following.

1. Construction of a pipeline for simultaneous sequence-to-sequence forecasting of the
track and the intensity of TCs.

(a) Use field knowledge for improved data preparation.
(b) Bring larger set of variables to test, in order to fit the compound character of

the task.

2. Detect influence of the climate change on the training process of the model.



Chapter 4

Methodology and Research Design

4.1 Data sets and variables

A TC system development is a complex physical system dependent on many environmental
features. Though the application of DL methods has shown to be effective in research,
mid (24h - 72h) and long-term (>72h) predictions are considered hard and regularly have
a large error. The forecast of intensity development features non-linear behavior [12], and
its prediction is still perceived as a hard DL task. Common forecasting methods involve
information from meteorological models and climate simulations and take into account
various variables in order to produce a good quality forecast. Hence, there is a need for DL
methods to involve a variety of meteorological variables that are considered to be relevant
as well.

A meteorological reanalysis is a combination of observations with a computer model
which reconstructs past weather conditions using previous short-range weather forecasts
in order to reconstruct weather conditions accurately in the past. The result of the rerun
of the model fills the gaps in observations in order to produce evenly distributed maps of
values. This data reconstructs past weather and climate; it is used to initialize numerical
weather prediction methods and builds models needed to calibrate forecast products 1.

In this work, a set of meteorological variables from the ERA5 reanalysis data set (see
Table 1) will be used to predict the development of a TC. This set was first suggested, based
on previous research, and proved to be efficient by [11] in the application of a CNN network
at a task of detection of extreme events, like TCs, Atmospheric Rivers and Weather Fronts.
It also was proved to be effective by [2], but these works did not include feature importance
tests, so exclusion tests may be relevant. Those sets of values are considered images in the
work in the sense that they represent a continuous map of values distributed over a spatial
map. Those values do not represent colours but can be represented as visual images us-
ing suitable software. We will acquire TC tracks data from the HURDAT2 dataset, which
holds the location and intensity information in 6-hour steps.Our training and prediction
processes encompass data from the years 1974 to 2021. To ensure consistency in coordinate
handling across hemispheres, we negate the latitude by multiplying it by -1 for the south-

1ECMWF. (2019, October). Use of ERA5 reanalysis to initialise re-forecasts proves ben-
eficial. https://www.ecmwf.int/en/newsletter/161/meteorology/use-era5-reanalysis-initialise-re-forecasts-
proves-beneficial

15
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ern hemisphere and similarly negate the longitude by multiplying it by -1 for the western
hemisphere. More detailed information on the data sets is available in the appendix.

ERA5 Dataset HURDAT2 Datset
Mean sea level pressure (Pa) Latitude (WGS84)
Total column water vapour (kg / m2) Longtitude (WGS84)
Northward wind at 10 meters (m / s) Maximum sustained wind (in knots)
Eastward wind at 10 meters (m / s) Year
Eastward wind at 850 hPa (m / s) Month
Northward wind at 850 hPa (m / s)
Temperature at 500 hPa (K)
Temperature at 200 hPa (K)

Table 4.1
List of variables used in the forecasting process.

4.2 Forecasting method

Figure 4.1 . Eastward wind on 10 meter. Vi-
sualisation of chosen size window for ERA5
data on the globe, centered on a TC.

The training data is a sequence of multi-
layer images of meteorological variables cen-
tred on the location of a TC, accompanied
by the location coordinates, year, month,
and wind intensity data. The size of the
images is 64x64 data points, which corre-
sponds to 16x16 degrees of longitude and
latitude. The data is organized in sequences
of past and future observations in time steps
of 6 hours for a supervised learning process,
where future observations serve as a label
for appropriate past observations. Thus,
the forecast is a sequence of the same set
of variables. We will use four past observa-
tions, which correspond to an observation
of 24h and predict 4, 8, or 12 observations,
which correspond to forecasts of up to 24h,
48h, or 72h. Training data samples are cut
from the original sequences of TC observations; each subsequent sample shifted in advance
of one 6-hour step from the previous one until there were not enough observations left to
fill the required number of future observations. We use all of the TCs that fit the minimum
requirement of minimal length. When we try to predict a longer term, we lose all the TCs
that are shorter than the minimal length, and they are not included in the training. This
drawback is natural because if we concentrate on a certain time period, shorter TCs will
not reach it either way. However, at the same time, the same explanation holds for making
it meaningful to perform separate training for different time ranges.
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4.3 Meteorological data dimensionality reduction

The meteorological data is considered in a 64x64 dimension 2D format, which may result in
heavy memory loads and long training because of a large number of neurons. For example
E1D1 model would have 79,328,737 neurons, with input dimension suitable for the original
data and filters multiplied by 8 in order to keep the same ratio of the filters. So, a dimen-
sionality reduction is relevant in order to reduce computational complexity. We will also
check which method of dimensionality reduction gives us the most useful result in terms of
the training of our forecasting model.

Since we deal with image-like data, using CNNs is possible, which is commonly used
for vision-related tasks. Common CNN kernel filters, max pooling, average pooling, convo-
lutional edges and others diminish the image and assist in understanding the data. After-
wards, dense NN layers are usually added and are trained for specific tasks on the modified
data. The efficiency of Dense layers depends on the choice of the first stack of modifying
layers. The layers have a high number of neurons in the input level and include a high
number of hidden neurons in order to detect correlations in the data. To reduce the size of
the network, we can continue to shrink the input further with filters, but this may cause
severe information loss. This technique was successfully implemented by [25].

Feature detection techniques also could be used to detect a common pattern of a
formation of TC, like in [13], where the authors implemented Advanced Dvorak technique2

to classify TCs using satellite photo images. This approach uses feature detection layers
in order to improve the vision ability. It helps to divide the larger task into smaller,
simpler ones, also reducing the dimension in a smart manner with a lower tendency to lose
information. Such an approach would require the preparation of labelled data and additional
supervised training processes and would serve the purpose of detecting or classifying a TC.
Therefore, this method is out of the scope of this work.

Another option is to apply an autoencoder and use its Latent Space Representation
(LSR). In the training process of autoencoders, the input data is diminished by encoding
layers to LSR, and decoding layers try to reconstruct it back to the original dimensionality.
It makes the LSR, by its construction, sufficient for the representation of the original data.
The efficiency of this method might be measured by the reconstruction loss.

We test two different types of autoencoders to produce the LSR. Deep Autoencoder,
which consists of Dense layers and Convolutional Autoencoder with Conv2D layers followed
by MaxPooling layers in the encoder network and Conv2D layers followed by UpSampling2D
layers in the decoder network.

We would like to test an assumption, whether the data encoded by the encoder will
be easier to process for the subsequent forecasting models. The basis for this assumption is
that by construction, the LSR contains the most relevant information for the representation
of the original data. And the smaller number of data points will also make it easier for the
network to learn.

Since the training process is unique for each type of data, we train a separate copy
of each autoencoder model for each variable and then save the suitable LSR frame for each
original frame of the variable.

2Wikipedia: The Dvorak technique (developed between 1969 and 1984 by Vernon Dvorak) is a widely
used system to estimate tropical cyclone intensity based solely on visible and infrared satellite images.
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We will compare the above methods with data resized by bicubic interpolation from
OpenCv3 given by ’resize’ function, using interpolation=INTER_CUBIC. When resizing,
this method looks at a 4x4 grid of neighbours of the pixel and uses a weighted average
of the neighbours to interpolate the new pixel when the closer neighbours have a higher
weight. This is a common resizing method in many image processing applications, which
gives relatively clear picture quality[5]. Since the transformation keeps the overall image
very close to the original, we will consider this type of compression as the ground-truth
image and compare other compressions to it.

4.4 Development and choice of autoencoders

The development process of autoencoders includes many decisions and manual fixes, tests
of different numbers of layers, types of activation functions and kernel sizes. The problem
is that every NN model has specific hyperparameters for specific data. In the case of
autoencoders, different sizes and numbers of layers can vary a lot. We want to bring our
data through a bottleneck that concentrates the information flow at the LSR between the
encoder and the decoder. However, the question of how much to cut at each layer could be
answered only empirically after training the proposed network.

During the development process, we discovered that a deep autoencoder network
grows very fast in the number of neurons and can easily lead to long training times. More-
over, the network gave worse results when we added more than 2-3 layers. We have con-
cluded that the network is is too big for the amount and type of data and cannot train
all the weights properly. During the training, when we used Rectified Linear Unit (ReLu)
activation function we also encountered a problem: the network might tend to output very
dull images with a very simplified picture, as in the 4.2.

Figure 4.2 . Dying ReLu example.
Original vs. restored images by Deep autoencoder of V wind component on 10 meters height.

This phenomenon is known as the ’dying ReLU’ and occurs in standard ReLU acti-
vation functions. When a neuron receives a negative input, it outputs zero. This tendency
can lead neurons to become ’stuck’ during training, consistently outputting zeros, rendering
them inactive and resulting in the loss of crucial information. Leaky ReLU addresses this
by enabling a slight gradient or information flow for negative inputs. Unlike the standard
ReLU, Leaky ReLU does not clamp negative inputs to zero; instead, it allows a small,
non-zero output, usually controlled by a slope parameter (alpha). This parameter deter-
mines the extent of the leak for negative values, thereby preventing neurons from becoming
entirely inactive and aiding in preserving information flow during training.

3OpenCv Python package: https://pypi.org/project/opencv-python/
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f(x) =
{

x if x > 0
α · x if x ≤ 0

Figure 4.3 . Leaky ReLu formula.

The selected architectures are as follows:
Deep Autoencoder with two dense layers: The initial dense layer accepts an input size

of 4096 and outputs a dimensionality of 600, while the subsequent Dense layer reduces this
to a dimensionality of 64. The entire model encompasses 4,997,360 trainable parameters.
The visualization of the architecture schema of the Deep Autoencoder can be seen in Figure
4.4, the model summary is presented in the Table 4.2:

Figure 4.4 . Architecture schema of Deep Autoencoder.

Layer (type) Output Shape Param #
input_15 (InputLayer) (None, 4096) 0
dense_28 (Dense) (None, 600) 2458200
dense_29 (Dense) (None, 64) 38464
dense_30 (Dense) (None, 600) 39000
dense_31 (Dense) (None, 4096) 2461696

Table 4.2
Deep Autoencoder model Summary

A Convolutional Autoencoder with encoder network, which includes three Conv2D
layers succeeded by MaxPooling layers employing a 2x2 pooling window. The decoder net-
work has three Conv2D layers followed by UpSampling2D layers with a 2x2 size, culminating
in one more Conv2D layer utilizing a sigmoid activation function. All Conv2D layers, ex-
cluding the final one, utilize the LeakyReLU activation function, set with alpha=0.15, and
maintain a 3x3 filter window. This configuration results in a model comprising a total of
2,796 trainable parameters. The vizualization of the architecture schema of the Convolu-
tional Autoencoder can be seen in Figure 4.5, the model summary is presented in the Table
4.3.

The stark contrast in network sizes is evident here, where a seemingly straightforward
Dense network possesses 1787 times more neurons than a comparatively intricate Convolu-
tional network.

The chosen Deep Autoencoder architecture produces blurry yet generally exact images
which maintain the right centres of low or high values and correctly represent asymmetric
images. We can see an example in Figure 4.4. In the training process, the loss function has
reached the Mean Squared Error (MSE) value of 0.00057305; the validation loss function
has reached the MSE value of 0.00061997. The best value for the validation loss was reached
at the 51st epoch, reaching the early stopping with no improvement of the validation loss
function for 20 epochs.
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Figure 4.5 . Architecture schema of Convolutional Autoencoder.

The chosen Convolutional Autoencoder architecture produces sharper images, main-
tains the right centres of low or high values, and correctly represents asymmetric images.
The main advantage of the Convolutional Autoencoder is that it can produce sharper edges
on the images in comparison to our Deep Autoencoder architecture. We can see an ex-
ample in Figure 4.5. In the training process, the loss function has reached the MSE value
of 0.00019757; the validation loss function has reached the MSE value of 0.0002031. The
best value for the validation loss was reached at the 200th epoch, and no early stopping
happened.

Figure 4.6 . Original vs. decoded images by Deep autoencoder, V wind component on 10
meters height.

We visualized the LSR for educational purposes to see how far autoencoders take the
representation of the image away from the original image while compressing it. We can see
that the visualizations of the Deep Autoencoder LSR have no meaningful structure for the
human eye; see Figure 4.8. While the LSR of the Convolutional Autoencoder does remind
us of the original image, the directions on the image do not seem to correspond to the final
reconstructed image4.9.

Finally, during the development process the architecture with convolutional layers
has shown more stable results than the architecture with dense layers. The training time
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Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 64, 64, 1)] 0
conv2d (Conv2D) (None, 64, 64, 16) 160
max_pooling2d (MaxPooling2D) (None, 32, 32, 16) 0
conv2d_1 (Conv2D) (None, 32, 32, 8) 1160
max_pooling2d_1 (MaxPooling2D) (None, 16, 16, 8) 0
conv2d_2 (Conv2D) (None, 16, 16, 1) 73
max_pooling2d_2 (MaxPooling2D) (None, 8, 8, 1) 0
conv2d_3 (Conv2D) (None, 8, 8, 1) 10
up_sampling2d (UpSampling2D) (None, 16, 16, 1) 0
conv2d_4 (Conv2D) (None, 16, 16, 8) 80
up_sampling2d_1 (UpSampling2D) (None, 32, 32, 8) 0
conv2d_5 (Conv2D) (None, 32, 32, 16) 1168
up_sampling2d_2 (UpSampling2D) (None, 64, 64, 16) 0
conv2d_6 (Conv2D) (None, 64, 64, 1) 145

Table 4.3
Convolutional Autoencoder model Summary.

Figure 4.7 . Original vs. decoded images by Convolutional autoencoder of V wind component
on 10 meters height.

of deeper architectures with dense layers were time consuming. Moreover, the resulting
reconstructions of the convolutional architectures look more informative.

4.5 Combining data of different dimensions

In the literature it is seen as a standard practice when implementing architectures involving
CNNs to incorporate a flatten layer after CNN filters and then put the 1-dimensional data
into dense layers, like in the work of [25]. The flattened 1-dimensional data can also be
directly fed into the next sequence to sequence NN architecture using conventional LSTM,
or GRUs. However, the flattening approach has some basic disadvantages. First of all, in
the case of dense layers, they have many more neurons than a convolutional structure and
do not suit modern sequence-to-sequence prediction. In the case of direct feed to LSTM or
GRU, we would also have a very heavy network because all of the grid data points are fed
into the network as separate variables.

An alternative to common LSTM, in this case, would be a 2-dimensional LSTM.
We are using ConvLSTM2D implementation by Keras, which was developed based on the
research of [18]. This implementation features convolutional input and recurrent transfor-
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Figure 4.8 . LSR of Deep autoencoder of V wind component on 10 meters height.

Figure 4.9 . LSR of Convolutional autoencoder of V wind component on 10 meters height.

mations instead of matrix addition and multiplication compared to regular LSTM. The
possible input of ConvLSTM2D is a 5D tensor of data in the shape of (samples, time, rows,
cols, channels), and the possible output is a 5D tensor with shape: (samples, timesteps,
new_rows, new_cols, filters). Each variable is a separate 2D channel, so we expand our
scalar variables from HURDAT2 to be the same dimensionality as ERA5 variables by repli-
cating the same value in all rows and columns.

4.6 Architecture of the model

In our architecture, we choose to handle all the variables in a single information stream
because we believe that all the variables are naturally connected since they represent the
same meteorological system. We want to check whether meteorological variables assist in
predicting the scalar variables, which is the fundamental question of our study, and whether
the scalar variables assist in training on the meteorological variables.

In order to produce sequence-to-sequence forecasting, we will use encoding and decod-
ing LSTM layers according to the architecture proposed by [23]. While the encoding layer
is responsible for learning the input data of past observations, the decoding layer generates
the sequence of future observations using the predicted representation from the encoding
layer.

Here, we also test the option of stacking two encoding and two decoding LSTM
layers. The purpose of this technique is to receive an additional level of abstraction of input
observations over time. The second LSTM layer should improve long-term predictions. This
technique was introduced and shown to be effective in speech recognition tasks by [4] and
is now a common technique in sequence prediction tasks. The authors of [4] showed that
stacking several LSTMs is more efficient than increasing the number of memory cells in a
layer.

For our first type of architecture, we are using three stacked ConvLSTM2D layers with
batch normalization layers between them as the encoder network. This network will utilize
only the option of sequence output of the ConvLSTM2D layers. Each layer passes to the
next one in the sequence of hidden states for each temporal time step. The decoder network
will be a single Conv3D layer that receives the last sequence from the last ConvLSTM2D
layer in the encoding network. We carry out this implementation only in order to highlight
the advantage of the encoding-decoding architecture. We will name the model ’Stacked’
across the document; the model has 3,876,685 trainable parameters.
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For our central architecture, we follow [18] [21] for the general architecture design.
Stacked ConvLSTM2D layers inside the encoder network and stacked ConvLSTM2D layers
inside the decoder network pass the sequence of hidden states to each other. The connection
between the encoder and decoder networks is only by passing the last states and not the
sequence. The input of the decoder network is the last hidden state, repeated as the desired
number of future predictions. We initialize the initial states of the decoder network with
the last sidden state and last cell state. So, the i-th encoding ConvLSTM2D layer initializes
the i-th ConvLSTM2D decoding layer. For the final output, we apply a dense layer with a
number of units equal to the number of channels using the TimeDistributed layer to every
temporal slice of the output. We apply a batch normalization layer between each pair of
layers that passes sequences between them to accelerate the training and help preserve the
gradient from vanishing or exploding, as suggested by [8]. The decoder part ends with two
time distributed layers. The time distributed Layers apply a dense layer to every temporal
slice of an input tensor independently. It consistently applies the same layer to every
temporal slice, maintaining the same weights and biases for each time step. This process
facilitates learning patterns or features across the entire sequence. During the development
process, we discovered that an additional second dense layer applied by time distributed
layer accelerates the training process and preserves the same quality of predictions.

We will test 3 versions of this architecture: with one, two or three stacked ConvL-
STM2D layers in the encoder part and correspondingly in the decoder part; we name the
models ’E1D1’, ’E2D2’, ’E3D3’ correspondingly. E1D1 architecture has 1,314,733 trainable
parameters, E2D2 has 6,723,757, and E3D3 has 8,362,669 . We can see the visualization of
the E2D2 model at Figure 4.10

Figure 4.10 . Architecture of the E2D2 model.
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4.7 Extracting the result

Since we have decided to artificially create a two-dimensional channel for scalar variables
from the HURDAT2 dataset by multiplying the appearances of the same value in all rows
and columns of a frame in the channel, and our prediction sequence corresponds to the
same shape and dimensions of the input sequence, we have to perform extraction actions
in order to receive a final value of the desired variable. Our model architecture has a
single data stream for all the variables, and all channels undergo the same manipulations
together, though treated internally as different channels. It means that every channel in
our final result is affected by all other channels; the scalar variables receive a projection of
meteorological variables on them. We can visualize the predicted array can be visualized as
an image; see Figure 4.11 where we observe some patterns similar to meteorological data.

Figure 4.11 . Visualization of predicted Longitude channel.
First line - original values. Second line - 4 original seed values followed by the predicted
values.

Because we have chosen MSE as our loss function for the training, our model predicts
the values with weights optimized to minimize the overall MSE of all single image values
together. For the extraction method of the scalar variables, it would be mostly natural to
take the mean value between all values inside one frame and consider it the predicted value.

4.8 Use of batch normalization layer

We have investigated the significance of the batch normalization layer by performing sep-
arate training of the E1D1 model. The batch normalization layer was incorporated atop
the sequence derived from the decoding ConvLSTM2D layer. With batch normalization
implemented, the E1D1 model required 645 seconds for training, reaching early stopping
at 30 epochs. Notably, by the 20th epoch, it achieved a validation loss of 0.00238. In
contrast, the same model without Batch Normalization consumed 1510 seconds, reaching
early stopping at 68 epochs and attaining a slightly higher validation loss of 0.00268 on the
58 epoch. So even in our most basic and lightweight architecture, the application of batch
normalization saves us 63% of training time.

However, when we implemented batch normalization in the E2D2 network across
all sequence passes between the layers (See Figure 4.10), it significantly reduced the per-
formance. Our analysis revealed that the mixed usage of ConvLSTM2D and batch nor-
malization layers carries drawbacks. Batch normalization’s normalization across the batch
dimension disrupted temporal dependencies, impacting the network’s performance.

Given that the E1D1 network passes a batch normalized sequence only once—from
the decoding layer to the time distributed layer employing dense layers—the temporal de-
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pendencies remained unaffected. Consequently, we opted to utilize batch normalization
solely between LSTMs and dense layers to preserve temporal dependencies.

4.9 Information on the chosen TC for visualization

We will bring in our study as an example for visualization of TC Wilma 2005, which was
classified as category five on the Saffir-Simpson Hurricane Wind Scale. TC Wilma was the
most powerful TC ever recorded in the Atlantic basin in terms of minimum central pressure
of 882 hPa. The central pressure of a storm serves as a critical indicator of its intensity.
The pressure gradient drives stronger winds, drawing air towards the low-pressure center
at higher velocities. Additionally, as the pressure decreases, the storm’s core becomes more
compact and concentrated, consolidating, and organising its energy.

Figure 4.12 . Hurricane Wilma after RI, 12:45
UTC, October 19, 2005 – About 340 miles
southeast of Cozumel, Mexico.

In terms of maximal sustained wind,
Wilma is among other TCs who reached
the maximal recorded speed of 95 knots.
Its rapid intensification phase occurred be-
tween 18:00 UTC on October 18 and 06:00
UTC on October 19, 2005, when Wilma tra-
versed the area of high ocean heat content.
During its RI event, the TC system had a
29-hPa drop in central pressure in the first
6 hours and a 54-hPa drop in the second 6
hours and reached the maximum speed of
295 kilometres per hour.

We have included the TC Wilma in
our test dataset, and we will use it to
present the performance and the generaliza-
tion capabilities of our models with the help
of a meaningful example.
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Chapter 5

Experiments

5.1 Training

Training of the models was performed on on Python 3 Google Compute Engine backend
(GPU) with Tesla V100-SXM2-16GB System RAM 12.7 GB and 15.0 GB of GPU RAM.
In order to overcome the overfitting effect we have used Early Stopping TF callback, condi-
tioned on improvement of the validation loss function and Model Checkpoint TF callback.
After the training finishes we reload the weights of the model from the last best Checkpoint.
Deep Autoencoder was trained and performed early stopping on 196 Epoch and it took 304
seconds. Convolutional Autoencoder trained for 200 epochs and it took 264 seconds.

Training sequence-to-sequence models on bicubic compressed data for short-term fore-
casts resulted in varied training times. The Stacked model completed training in 851 sec-
onds, reaching early stopping by the 16th epoch; E1D1 took 563 seconds, reaching early
stopping by the 17th epoch; E2D2 required 740 seconds, performing early stopping at the
34th epoch; E3D3 took 1563 seconds to reach early stopping by the 16th epoch. The
patience parameter was set to 10 epochs.

5.2 Architecture selection

First, we would like to choose the better configuration for the most efficient encoding of the
meteorological data and get an insight into the efficiency of the different model architectures.
We run training with all variables on the short-term forecast of 24 hours. Short-term forecast
training has two main advantages. More data samples are available for the training; since
RI events generally develop during 24h, running on a set of samples with 24h of past
observations and 24h of prediction will, on average, give insight into more data samples on
the upcoming RI event.

To precisely understand the training dynamics, we compare the result of the validation
MSE of each variable separately. The values were generated automatically during the
training using custom metrics. We chose MSE as the loss function for the training method.
It means that obtaining the separate MSE values gives us an impression of how much each
variable contributed to the overall MSE. It allows us to understand which variables train
better. The values are presented in the Table 5.1.

We generate the values using models trained on the training dataset, using the TF
predict function applied to all data samples of the predicted track of a TC from the valida-

27
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tion dataset. We predict the track in steps of 4 observations. We predict the observations
of the next 24 hours based on original observations of the last 24 hours each time; we do
not include duplicate observation points. The values in Table 5.2 represent the mean abso-
lute difference between all observations in all samples and their corresponding predictions.
Distance in kilometres was first measured separately for each location based on longitude
and latitude before the calculation of the MAE. For example, for short-term 24-hour predic-
tion, we will have in the resulting track prediction each time four predicted observations of
+6,+12,+18, and +24 hours each, followed by the subsequent four predicted observations
of +6, +12, +18, +24 until the end of the track. We will compare each of those predictions
with the ground truth observation. This procedure will remain the same throughout the
chapter.

5.3 Result of Architecture selection

Loss Lat Lon Wind msl u10 v10 tcwv v850 u850 t200 t500
Stacked+B 0.00155 0.00137 0.00108 0.00303 0.00131 0.00220 0.00234 0.00591 0.00174 0.00157 0.00289 0.00160
E1D1+B 0.00031 0.00043 0.00040 0.00156 0.00063 0.00138 0.00155 0.00410 0.00101 0.00124 0.00146 0.00074
E2D2+B 0.00042 0.00035 0.00037 0.00150 0.00052 0.00148 0.00152 0.00360 0.00097 0.00097 0.00135 0.00072
E3D3+B 0.00049 0.00091 0.00035 0.00116 0.00096 0.00183 0.00167 0.00402 0.00094 0.00098 0.00140 0.00088
Stacked+C 0.00132 0.00121 0.00088 0.00293 0.01083 0.00103 0.05416 0.00714 0.04012 0.00149 0.00179 0.00491
E1D1+C 0.00046 0.00044 0.00055 0.00141 0.00507 0.00058 0.00960 0.00455 0.00070 0.00093 0.00068 0.00294
E2D2+C 0.00042 0.00062 0.00052 0.00125 0.00481 0.00052 0.00956 0.00454 0.00069 0.00083 0.00069 0.00306
E3D3+C 0.00044 0.00052 0.00049 0.00185 0.00488 0.00051 0.00968 0.00460 0.00080 0.00093 0.00071 0.00292
Stacked+D 0.00119 0.00114 0.00131 0.00277 1.33531 4.95765 2.29369 2.34665 3.06112 1.22288 0.00081 1.67651
E1D1+D 0.00266 0.00096 0.00085 0.00233 0.00932 0.02256 0.02922 0.05668 0.01899 0.01526 0.00109 0.01680
E2D2+D 0.00120 0.00070 0.00055 0.00282 0.01003 0.02098 0.02885 0.05520 0.01670 0.01462 0.00096 0.01516
E3D3+D 0.00218 0.00124 0.00093 0.00175 0.00991 0.02194 0.02881 0.05828 0.02002 0.01579 0.00100 0.01948

Table 5.1
Comparison of partial MSE loss functions on the validation dataset.
B. - Bicubic Interpolation, C. - Convolutional Autoencoder, D. - Deep Autoencoder
Cyan color highlights the lowest value across the given compression type, and red color is
across all compression types.

Based on the results from Table 5.1, we can see that the E2D2 model had the best
validation loss function values for meteorological variables from ERA5 across all compres-
sion methods. E1D1 and E3D3 have performed very closely to E2D2. Generally, we can
conclude that the Encoder-Decoder architecture successfully predicts the ERA5 variables.
Notably, the use of convolutional compression has led to the lowest values of partial MSE
validation loss function for the variables u10, u850, v850, and t200, with significant differ-
ences compared to other compression methods. Bicubic compression has led to the lowest
values for the meteorological variables msl, v10, two, and t500, with significant differences
compared to other compression methods. We can see an example in Figure 5.1. The figure
represents a visualization of original values and predictions of the V-component of the wind
at a height of 10 meters, for the full track of Wilma 2005 TC. The prediction was produced
by the model E3D3 on convolutional compression and have reached value of validation MSE
of 0.00051. The odd lines display the original value from 0 to 44. The even lines display
four original seed values, numbered 0 to 3. In the prediction process, we predict each time
frame of four observations of the next 24 hours based on original observations of the last 24
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hours. The resulting predictions are concatenated and are displayed as frames numbered
4-44 in the second and fourth lines.

Figure 5.1 . V10 variable, Wilma 2005. Model E3D3, convolutional compression, short-term
forecast.
Odd lines - original values. Even lines - 4 original seed values (frames 0-3) followed by the
predicted values (frames 4-44).

We can observe the MAE of the models on the test dataset in Table 5.2. The minimal
values of MAE are shown bold across each compression method; red highlights the best value
across all compression methods.
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Lat (deg.) Lon (deg.) Wind
(knots)

Distance
(km)

Stacked + B. 1.579 2.532 10.869 329.662
E1D1 + B 0.689 1.646 6.809 186.559
E2D2 + B 0.808 1.188 6.895 156.763
E3D3 + B. 0.765 1.710 6.653 201.698
Stacked + C. 1.510 2.378 9.886 312.839
E1D1 + C. 0.714 2.518 7.342 260.770
E2D2 + C. 0.885 1.949 6.707 228.117
E3D3 + C 0.938 1.530 7.107 196.077
Stacked + D. 3.752 5.814 12.579 716.729
E1D1 + D. 1.051 2.156 8.826 256.734
E2D2 + D. 1.023 1.632 10.631 209.497
E3D3 + D. 1.469 2.729 7.062 329.555

Table 5.2
Comparison of MAE, on test dataset.
B. - Bicubic Interpolation, C. - Convolutional Autoencoder, D. - Deep Autoencoder

Figure 5.2 . Overfitting effect of Stacked model
during training.

Even though Stacked had minimal
values of partial MSE test-loss function, it
has shown the weakest performance on the
validation and test datasets. It points to an
overfitting effect. Figure 5.2 shows that the
Loss and Validation Loss functions diverge
from each other. The model has learned the
training data so well that it loses the gener-
alization effect and starts to perform poorly
on new unseen data on the test.

In our case, the model encounters dif-
ficulties in learning long-term correlations
in the data; it achieves low loss function val-
ues because it succeeds in fitting its weights
very well for the specific training data. The
reason for it is incorporated in the architecture of the model. The different layers do not
share hidden and cell states between them, so no internal information specific to the LSTM
architecture is passed between the different ConvLSTM2D layers of the model. It is also
the same case regarding the decoding part of the network. It was replaced for simplicity by
the Conv3D layer, which also does not receive any internal memory from the LSTM layers.
Because of this, we decided not to investigate this architecture further in the following steps.

Based on the results of MAE, presented in Table 5.2, we conclude that the compres-
sion with the deep autoencoder was not helpful enough and lost too much information that
was sufficient for the models to train effectively. According to the values of the partial vali-
dation loss function presented in Table 5.1, we conclude that, indeed, all of the models had



Tropical cyclones forecasting 31

significantly lower values in the measurement of the errors of the meteorological variables
compared to other types of compression. So, we will not investigate the LSR of the deep
autoencoder further.

In conclusion of this experiment, we can obtain from Table 5.2 across all compression
methods that the E2D2 model has the best performance in terms of MAE of the total
distance in kilometres, reaching a value of 156. E3D3 has the best MAE of the Maximum
Sustained Wind Speed, reaching the value of 6.653 in knots. We can also observe some
informative correlations. Across convolutional compression (lines 5-9), there is a trend of
reducing MAE of Total Distance for more complex architecture. We conclude that the higher
complexity of E3D3 architecture prevents the model from training more efficiently on the
bicubic compression, which is close to the original data and possesses more rare information
and finer lines or areas. Consequently, the relative simplicity of the data compressed by
the convolutional autoencoder assists the more complex architecture type of E3D3 in more
effective training. Nevertheless, the improvement is not sufficient to outperform the E1D1
and E2D2 models trained on the bicubic compressed data.

In figure 5.3, we visualize the result of the full track prediction by the models trained
in the 5.2 experiment, and the method described in the subsection 5.2. The example of
Wilma 2005 is a part of the test dataset and represents the most intense TC in the Atlantic
basin in terms of the minimal center pressure. By obtaining this example, we can judge the
generalization ability of the models. In the prediction process, we predict the values of four
observations of the next 24 hours each time based on original observations of the last 24
hours. We concatenate and display the resulting predictions as the continuation of the plot.
We can see the visualizations in the Figure 5.3. The red line and the four first observations
on the green line represent the original values, and the green line after the fourth point
represents the predicted values.

E1D1 Convolutional and E2D2 Bicubic show the most stable predicted tracks.
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Bicubic Convolutional

E1D1

E2D2

E3D3
Table 5.3
Visualisations of Short-Term predictions of Wilma 2005.



Tropical cyclones forecasting 33

5.4 Exclusion test

In this experiment, we would like to analyze whether meteorological variables of ERA5
introduce an unneeded noise. The resulting values are presented in the table 5.6

Lat (deg.) Lon (deg.) Wind
(knots)

Distance
(km)

Stacked 1.499 2.608 10.792 324.740
E1D1 0.996 1.076 7.394 163.838
E2D2 0.854 1.258 7.138 170.673
E3D3 1.445 1.294 7.362 223.451

Table 5.4
Comparison of MAE on the test dataset with limited training on HURDAT2 variables only.

We can obtain the MAE of the results in Table 5.6. In terms of the MAE of Distance,
the Stacked and E3D3 models have performed slightly worse in comparison to their best
runs on all variables. E1D1 have performed better without the meteorological variables
reaching a value of MAE smaller in 12 km. However, there is a significant difference if we
look at the results of E2D2. Without the ERA5 variables, it has an MAE value lower in 14
km. We conclude that the addition of Meteorological variables to the training set does bring
an improvement, but only E2D2 succeeds in utilizing this advantage. It corresponds to the
observation regarding the values of partial validation loss function MSE of the meteorological
variables.

5.5 Test dependency on year

In this section, we test the dependency of the models on the variable Year. We train the
models E1D1 and E2D2 with bicubic compression and E3D3 with convolutional compression
as our best versions of the encoding-decoding architecture without the variable Year and
compare the result to the previous runs. In all our experiments we divide the sample
data across the years, leaving the most recent years in the validation and test datasets.
By performing the consolidation, our models are not exposed to the most recent trends in
movement and intensity of TCs, as expected from [22] [7] [1] . In this experiment we exclude
the variable Year from the calculation in a custom loss function and perform the trainings
for short-term forecast.

The resulting values are presented in the Table 5.5. The more complex models, E2D2
and E3D3, have succeeded in performing better when the Year variable is among the training
set. Using the set of variables, a backward tendency appears; the more complex model has
achieved poorer results. Notable the model E2D2 have reached an MAE value lower in 30
km better using the Year variable than the lowest MAE value in this experiment. We can
also obtain that there is also an advantage in predicting the wind intensity.



34 Tropical cyclones forecasting

Lat (deg.) Lon (deg.) Wind
(knots)

Distance
(km)

E1D1 + B 1.088 1.302 6.982 186.015
E2D2 + B 0.748 2.082 7.128 230.930
E3D3 + C 1.286 2.128 6.835 268.783

Table 5.5
Comparison of MAE, on test dataset.
B. - Bicubic Interpolation, C. - Convolutional Autoencoder

5.6 Best run on 24h, 48h, 72h

In this section, we train the models E1D1 and E2D2 with bicubic compression and E3D3
with convolutional compression as our best versions of the encoding-decoding architecture.
We extend our experiment to mid and long-term forecasts of 48 and 72 hours, correspond-
ingly. The measurement method remains the same, as described in Section 5.2.

Term Lat (deg.) Lon (deg.) Wind
(knots)

Distance
(km)

E1D1 + B 24h 0.689 1.646 6.809 186.559
E2D2 + B 24h 0.808 1.188 6.895 156.763
E3D3 + C 24h 0.938 1.530 7.107 196.077
E1D1 + B 48h 2.180 2.643 9.952 376.790
E2D2 + B 48h 3.171 5.889 19.780 725.805
E3D3 + C 48h 2.128 2.421 13.081 359.293
E1D1 + B 72h 1.895 3.240 11.530 403.252
E2D2 + B 72h 2.205 4.095 11.994 490.421
E3D3 + C 72h 2.169 4.630 14.988 552.555

Table 5.6
Comparison of MAE on the test dataset compared on different forecasting periods.
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Conclusion and Future Work

In this study, we have shown that incorporating the meteorological variables improves the
track and intensity forecast. Also, the architecture of the encoder-decoder forecast with two
ConvLSTM2D layers in the encoding and the decoding network has shown the best result.
Thus, the second layer has succeeded in bringing an improvement in learning long-term
correlations. However, the meteorological variables may often make it harder for the NN
model to predict the location and intensity compared to the basic example of running only
on scalar data from HURDAT2. Consequently, thorough development and experiments
are required to investigate further the simultaneous prediction of 2-dimensional and one-
dimensional TC data.

Feature importance technique is required; for example, using such an approach, like
measuring the partial loss functions presented in Table 5.1 can assist in classifying the
variables into groups and later performing exclusion tests in the same manner, like in
section 5.4.

Moreover, we have shown that convolutional compression has yielded significantly
lower values of partial MSE validation loss function for some variables. It would be inter-
esting to compress only those variables for which the compression brought better results
than the original data.

It is also desirable to find additional variables like the values of Coriolis force in
different locations or data manipulation techniques from modern TC research that will help
train the model more efficiently and reach higher levels of precision. An example of such
features is the division of the basin into logical clusters, in which the expected behaviour
of TCs may differ. Another way to provide additional information could be by treating
the coordinate system three-dimensionally rather than as a two-dimensional projection.
Additional meteorological variables should also be considered, for example, geopotential
height at different pressure levels.
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Appendix

6.1 Hurricane Database (HURDAT2)

HURDAT2 database is developed by National Hurricane Center (NHC) and Central Pacific
Hurricane Center (CPHC) and is managed by Atlantic Oceanographic and Meteorological
Laboratory (AOML) under National Oceanic Atmospheric Administration US (NOAA).

Copyright notice: As required by 17 U.S.C. 403, third parties producing copyrighted
works consisting predominantly of the material produced by U.S. government agencies must
provide notice with such work(s) identifying the U.S. Government material incorporated
and stating that such material is not subject to copyright protection. The information
on government web pages is in the public domain unless specifically annotated otherwise
(copyright may be held elsewhere) and may therefore be used freely by the public.

The database is divided into two parts: Atlantic hurricane database 1851-2021, and
Northeast and North Central Pacific hurricane database 1949-2021.

The database includes official assessment of the cyclone’s history, provided by post-
storm analysis of each tropical cyclone in the observation areas, which takes into account
observations that are not available in real-time.

Format and variables:
Comma-delimited, text format with six-hourly (00:00, 06:00, 12:00, 18:00 UTC) in-

formation on the location, maximum winds, central pressure, and (beginning in 2004) size
of all known tropical cyclones and subtropical cyclones. The intensity of the TC is divided
into several categories, only the two strongest are usually taken into account for DL research
tasks.

Format and variables

Header line format:

• Basin:

– EP – Northeast Pacific
– CP – North Central Pacific
– AL - Atlantic

• ATCF cyclone number for that year

• Year

• Name if available, or else “UNNAMED”
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• Number of best track entries – rows – to follow

Data lines:

• Date

• Hours and minutes (UTC)

• Record identifier:

– L – Landfall (center of system crossing a coastline)
– P – Minimum in central pressure
– I – An intensity peak in terms of both pressure and maximum wind
– S – Change of status of the system
– T – Provides additional detail on the track (position) of the cyclone

• Status of system:

– TD – Tropical cyclone of tropical depression intensity (< 34 knots)
– TS – Tropical cyclone of tropical storm intensity (34-63 knots)
– HU – Tropical cyclone of hurricane intensity (> 64 knots)
– EX – Extratropical cyclone (of any intensity)
– SD – Subtropical cyclone of subtropical depression intensity (< 34 knots)
– SS – Subtropical cyclone of subtropical storm intensity (> 34 knots)
– LO – A low that is neither a tropical cyclone, a subtropical cyclone, nor an

extratropical cyclone (of any intensity)
– DB – Disturbance (of any intensity)

Location:

• Latitude

• Hemisphere: North or South

• Longitude

• Hemisphere: West or East
Strength:

• Maximum sustained wind (in knots)

• Minimum Pressure (in millibars)

• Wind radii maximum extent variables (in nautical miles), tracked since 2004. These
values describe the size of the TC:

• 34 kt, northeastern quadrant



Tropical cyclones forecasting 43

• 34 kt, southeastern quadrant

• 34 kt, southwestern quadrant

• 34 kt, northwestern quadrant

• 50 kt, northeastern quadrant

• 50 kt, southeastern quadrant

• 50 kt, southwestern quadrant

• 50 kt, northwestern quadrant

• 64 kt,northeastern quadrant

• 64 kt, southeastern quadrant

• 64 kt, southwestern quadrant

• 64 kt, northwestern quadrant

• Radius of Maximum Wind (in nautical miles)

6.2 ECMWF Reanalysis v.5 (ERA5)

ERA5 is produced by the Copernicus Climate Change Service (C3S) at European Centre
for Medium-Range Weather Forecasts (ECMWF).

Copyright notice: Copyright ©[2022] European Centre for Medium-Range Weather
Forecasts (ECMWF). Source www.ecmwf.int Licence Statement: This data is pub-
lished under a Creative Commons Attribution 4.0 International (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/ Disclaimer: ECMWF does not accept any
liability whatsoever for any error or omission in the data, their availability, or for any loss
or damage arising from their use. Where applicable, an indication if the material has been
modified and an indication of previous modifications.

It is a global atmospheric reanalysis database, covering the period from January 1950
to the present. New data is available within 5 days in real-time.

Format and variables:
The data is available in GRIB format, which is standardized and commonly used in

meteorology to store weather data. It is divided into two parts, single-level and pressure
levels measurements.

The data is provided in hourly time rate and on a 30 km spatial grid. Atmospheric,
land and oceanic climate variables are provided either as single-level measurements in meters
above ground or as pressure level measurements on 137 different levels from the surface up
to a height of 80km.
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Format and variables

It is a partial list of all variables, including only the ones relevant to my work.

• msl - Mean sea level pressure (Pa)

• tcwv - Total column water vapour (kg/m2)

• v10 - Northward component of the wind at 10 meters (m/s) 10 metre V wind compo-
nent

• u10 - Eastward component of the wind at 10 meters (m/s) 10 metre U wind component

• v850 - Northward component of the wind at 850 hPa (m/s)

• u850 - Eastward component of the wind at 850 hPa (m/s)

• t200 - Temperature at 200 hPa (K)

• t500 - Temperature at 500 hPa (K)
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