

Introduction

This poster discusses the effect of boundary Gaussian additive noise on multistable partial differential equations (PDEs). In particular, such a term is involved in constructing early-warning signs (EWSs) able to predict the crossing of deterministic bifurcations thresholds. The analytic results are applied to a two-dimensional ocean model.

Description of the studied systems

We introduce the fast-slow system perturbed by white noise \dot{W} .

$$\begin{cases} du(x,t) = (F_1(p(x,t)) \ u(x,t) + F_2(u(x,t), p(x,t))) \ dt & \text{for } x \in \mathcal{X}, \\ \gamma(p(x,t)) \ u(x,t) = \sigma B \dot{W}(x,t) & \text{for } x \in \partial \mathcal{X}, \\ dp(x,t) = \epsilon G(u(x,t), p(x,t)) \ dt & \text{for } x \in \mathcal{X}. \end{cases}$$
(1)

We observe the linearized fast system, with $\epsilon = 0$, on a steady solution $u_*^{(p)}$, thus obtaining

$$\begin{cases} du(x,t) = A(p) \ u(x,t) dt & \text{for } x \in \mathcal{X}, \\ \gamma(p) \ u(x,t) = B\dot{W}(x,t) & \text{for } x \in \partial \mathcal{X}, \\ u(x,0) = u_0(x) & \text{for } x \in \mathcal{X}. \end{cases}$$

The time autocovariance of the solution of (1) with an initial condition close to $u_*^{(p)}$ and the time autocovariance from (2) with u_0 in a neighbourhood of the null function are expected to be similar under small noise perturbations and long times. We assume the linear operator A_0 such that

 $A_0(p)v = A(p)v \quad \text{for any } v \in \mathcal{D}(A_0(p)) = \mathcal{D}(A(p)) \cap \mathcal{D}(\gamma(p)) \cap \{\gamma(p) \mid v(x) = 0 \text{ for } x \in \partial \mathcal{X}\} ,$ to be negative solely for $p < \lambda \in \mathbb{R}$ and non-positive for $p = \lambda$. We assume that there exists a constant $c(p) \in \mathbb{R}$ such that $(A_0(p) + c(p))^{-1}$, for $p \leq \lambda$, is compact. This entails that the spectrum of $A_0(p)$ is discrete and labeled as $\left\{\lambda_i^{(p)}\right\}_{i\in\mathbb{N}>0}$. The generalized eigenfunctions of $A_0(p)^*$ corresponding to $\left\{\overline{\lambda_i^{(p)}}\right\}_{i\in\mathbb{N}_{>0}}$ are labeled as $\left\{e_{i,k}^{(p)^*}\right\}_{i\in\mathbb{N}_{>0}}$, for k their rank, and assumed to be continuous on $p \leq \lambda$ in $L^2(\mathcal{X})$. We introduce the time-asymptotic autocovariance as

$$V_{\infty}^{\mathbf{\tau}} := \lim_{t_2 \to \infty} V_{(t_1, t_2)} ,$$

for fixed $\tau = t_1 - t_2$ and $V_{(t_1,t_2)}$ that satisfies

$$\langle v, V_{(t_1,t_2)}w \rangle = \operatorname{Cov}(\langle u(\cdot,t_1),v \rangle, \langle u(\cdot,t_2),w \rangle).$$

Theorem (Construction of EWSs)

We set $\tau \geq 0$. Under non-restrictive assumptions on γ and B, we assume that the generalized eigenfunctions of $A_0(p)^*$ are complete in $L^2(\mathcal{X})$ for any $p \leq \lambda$.

a) We set the sequences $\{f_1^{(p)}\}, \{f_2^{(p)}\}$ continuous in $L^2(\mathcal{X})$ for $p \leq \lambda$. Then for any $\delta > 0$ there exist two sequences $\left\{g_1^{(p)}\right\}, \left\{g_2^{(p)}\right\}$ continuous in $L^2(\mathcal{X})$ such that $g_1^{(p)}, g_2^{(p)} \in \mathcal{D}(A_0(p)^*)$, $\left| \left| f_1^{(p)} - g_1^{(p)} \right| \right| < \delta \quad , \quad \left| \left| f_2^{(p)} - g_2^{(p)} \right| \right| < \delta \; ,$ for any $p \leq \lambda$, and $\left|\left\langle g_{1}^{(p)}, V_{\infty}^{\tau} g_{2}^{(p)} \right\rangle\right| = \Theta\left(-\operatorname{Re}\left(\lambda_{1}^{(p)}\right)^{-2M_{1}+1}\right)$

for $p \to \lambda^-$ and M_1 the dimension of the generalized eigenspace of $A_0(p)^*$ corresponding to $\lambda_1^{(p)}$. b) We set $p < \lambda$. The time-asymptotic autocorrelation nonlinear operator of lag time τ , labeled \hat{V}^{τ}_{∞} and defined as

$$\hat{V}^{\tau}_{\infty}(v,w) = \frac{\langle v, V^{\tau}_{\infty}w \rangle}{\langle v, V^{0}_{\infty}w \rangle}$$

for any $v, w \in \mathcal{D}(A_0(p)^*)$ such that $\langle v, V^0_{\infty}w \rangle \neq 0$, satisfies

$$\hat{V}_{\infty}^{\tau}\left(e_{i,1}^{\left(p\right)*},f\right) = e^{\overline{\lambda_{i}^{\left(p\right)}}\tau}$$

for any $i \in \mathbb{N}_{>0}$ and f in a dense subset \mathcal{H}' of $L^2(\mathcal{X})$ such that $\left\langle e_{i,1}^{(p)*}, V_{\infty}^0 f \right\rangle \neq 0$.

EARLY-WARNING SIGNS FOR SPDES WITH BOUNDARY NOISE

Paolo Bernuzzi¹ Christian Kuehn¹ Henk Dijkstra²

¹Technische Universität München, ²Universiteit Utrecht

A two-dimensional Boussinesq model

The Boussinesq model, studied in [1], describes different properties of a two-dimensional region of the ocean. Such area is defined by the spatial variables $(z, x) \in [-H, 0] \times [0, L]$ for depth H and latitude length L. The scaled and non-dimensionalized variables that define the model are the salinity S, the temperature T, the vorticity ω and the streamfunction ψ . The two-dimensional system is described as follows,

$$Pr^{-1}\left(\frac{\partial\omega}{\partial t} + u\frac{\partial\omega}{\partial x} + w\frac{\partial\omega}{\partial z}\right) = \Delta\omega + Ra\left(\frac{\partial T}{\partial x} - \frac{\partial S}{\partial x}\right),$$

$$\omega = -\Delta\psi \quad , \qquad u = \frac{\partial\psi}{\partial z} \quad , \qquad w = -\frac{\partial\psi}{\partial x},$$

$$\frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + w\frac{\partial T}{\partial z} = \Delta T ,$$

$$\frac{\partial S}{\partial t} + u\frac{\partial S}{\partial x} + w\frac{\partial S}{\partial z} = Le^{-1}\Delta S ,$$

with boundary conditions displayed in the subsequent figure.

Aside from p, the parameters are fixed. The functions Q_S and T_S on x are assumed to be symmetric on the equator, and the function V_S endorses asymmetry in the system.

Fig. Components of a stable solution u_* for fixed p. The red rectangle displays the boundary of the support of the indicator function g_1 and the magenta rectangle delimits the support of the indicator function g_2 .

References

- [1] Henk A Dijkstra and M Jeroen Molemaker. Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech., 331:169–198, 1997.
- [2] Peter D Ditlevsen and Sigfus J Johnsen. Tipping points: Early warning and wishful thinking. Geophys. Res. Lett., 37(19), 2010.

(2)

(3)

(4)

To apply the early-warning signs on the Boussinesq model, we observe for a long time the time autocovariance of a translation of its solution, such that the boundary conditions in γ are homogenized. The rate in (3) is observed in the figure to follow, under the consideration that g_1 and g_2 are orthogonal to the generalized eigenspace of $A_0(p)$ corresponding to λ_1 . Also, the generalized

eigenspace of $A_0(p)^*$ related to $\lambda_2^{(p)}$ has dimension equal to 1 for any p. In the case displayed below, the sign predicts the crossing of a supercritical pitchfork bifurcation threshold $\lambda \approx 0,063$.

The time autocorrelation of a solution of the system under different parameters is observed for a long time in the figure below. The sign anticipates the approach to a saddle-node bifurcation threshold $\lambda \approx 1$. The integral of the differences of the real and imaginary parts of the numerically studied quantities appears to be of order 10^{-5} . Such values are expected to be small from (4).

We have constructed two early-warning signs in the form of the qualitative behaviour of timeasymptotic autocovariance and quantitative growth of the time-asymptotic autocorrelation of the solution of a linearized system. The numerical application of the results is shown to be possible under the required considerations. Such an outcome expands the theory of early-warning signs ([2]) on the field of stochastic partial differential equations under boundary noise.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 956170.

Application of the EWSs

Conclusion