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Background

Stream sediment environments:
• Flowing stream
• Exchanges with sediments
• Redox gradients
• Biofilms



Background

Höhne et al. 2022, Water Research, 224

Can we characterise the times water 
spends in different compartments of 
streams at the reach scale?
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Exposure time applied to hyporheic zones
Define the time spent in different components of the stream – sediment system.

Has been demonstrated with Lagrangian (particle) approaches:
• Roche et al. (2019) Water Resources Research – developing memory functions
• Li et al. (2020) Water Resources Research – tracked time in bioreactive layers

Consideration of multi-zone models:
• Roche and Dentz (2022) Geophysical Research Letters – layered multi-zoned models
• Aubeneau et al. (2015) Freshwater Science – parallel multi-zoned model



Model approach
Exposure time (Ginn, 1999; Seeboonruang and Ginn, 2006a; 2006b) 
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Model approach
Exposure time (Ginn, 1999 ; Seeboonruang and Ginn, 2006 a,b) 
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Extra dimension

Exposure velocity One when in tracked zone, 
zero otherwise

Extend to assume dc/dt = 0:
Tracked – transient state transport equation
Not tracked – steady state transport equation



Model approach

Solve analytically for different combinations of exposure velocity
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Conceptual results

vs = 1.0 m/s
D = 0.5 m2/s
Db = 1 ×10-4 m2/s
Dh = 1 ×10-5 m2/s
b = 0.05 m
h = 1.0 m
x = 400 m
Coupling term = 2 m



Conceptual results



Field application – Erpe River (side channel)
Höhne et al (2022):
• Stream tracer test accompanied sediment stream bed test
• Injection of Fluorescein and Resazurin for 75 Minutes 

• BTC’s collected at 170m, 180m, 280m and 480m
• BTC collected 325m on return channel



Tracer test interpretation
Exposure time distributions:
• Modified exposure times after Höhne et al. (2021)

Convolve modified exposure times to develop transfer function

Perform convolution with stream tracer pulse

Consider first order reactions and parent-daughter relationships (RAZ/RRU)

Invert/uncertainty analysis with MCMC approach



Results: Model fits



Results: Exposure time



Relationship to point observations

Gabapentin-Lactam
(µg/L)
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Site D -side 
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Summary

Exposure time model:
• Allows us to track time spent in different components of the stream

Can interpret multi-tracer tests utilising underlying exposure times

Inverted tracer tests quantify the exposure to benthic zone (microbial metabolism)

Transformation of Gabapentin  to Gabapentin-Lactum consistent with sediment studies of Höhne et al. 
(2022)
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