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Abstract
Modeling the plasma and magnetic field state in Mercury’s

magnetosheath is one of the most urgent tasks in Mercury

science in view of the upcoming BepiColombo mission. By

considering the steady-state and constructing the Laplace

equation for the scalar magnetic potential in the magne-

tosheath (eliminating the interplanetary magnetic field in the

magnetosphere and vice versa), the plasma and magnetic

field state is obtained as a function of the solar wind condi-

tion and the spatial coordinates of the magnetosphere. We

make extensive use of the exact solution of the Laplace

equation for the parabolically shaped magnetosheath and

map the solution onto the realistic shape of magnetosheath

by assuming the magnetosheath thickness is scalable be-

tween the parabolic shape and the realistic shape along the

magnetopause-normal direction. The quality of the con-

structed model can successfully be tested against the glob-

al hybrid simulation of Mercury’s magnetosheath, promising

that the model serves as a useful tool for BepiColombo’s

detailed magnetosheath studies at Mercury.

1. Kobel-Flückiger model
■ Magnetosheath is a current-free region to a good 

approximation, no absorption of particles

→ Laplace equation for magnetic potential and 

velocity potential

■ Kobel and Flückiger (1994) solved the Laplace 

equation with parabolic boundaries (KF model)

■ Parabolic coordinates (𝑢, 𝑣, 𝜑) (𝑥0: focal point)

𝑥 = 𝑥0 + 𝑢 𝑣 cos (𝜑)

𝑦 =  1 / 2 (𝑢2 – 𝑣2)

𝑧 =  𝑢 𝑣 sin 𝜑

■ Magnetopause (MP) and bow shock (BS) as 

boundaries: 

𝑣𝑚𝑝 = 𝑅mp 𝑣𝑏𝑠 = 2𝑅𝑏𝑠 − 𝑅𝑚𝑝

■ In magnetosphere: Cancelation of interplanetary 

magnetic field (IMF)

■ Magnetic potential has five parameters:

𝑅𝑚𝑝 , 𝑅𝑏𝑠 , 𝐵𝑥
𝐼𝑀𝐹 , 𝐵𝑦

𝐼𝑀𝐹 , 𝐵𝑧
𝐼𝑀𝐹

■ Velocity potential has three parameters:

𝑅𝑚𝑝 , 𝑅𝑏𝑠 , 𝑈𝑥

2. Empirical model
■ Shue et al. (1997) model for magnetopause:

𝑟𝑀𝑃 = 𝑅𝑀𝑃

2

1 +  cos 𝜃
 

■ Slavin et al. (2009) conic section bow shock:

𝑟𝐵𝑆 =
𝑝𝜀

1 + 𝜀 cos 𝜃
■ Best-fit parameters for simulated data:

𝑅𝑚𝑝 = 1.45 𝑅𝑀 , 𝑝 = 2.35 𝑅𝑀, 𝜀 = 1.01
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6. Outlook
Conformal mapping

■ Harmonic transformation in 2D

■ Analytic solution for custom MP and BS shapes

■ Currently working on the numerical solution of the 

Cauchy-Riemann equations 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 ,  

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
→ Aim: Model magnetosheath for asymmetric MP

3. Scalar potential mapping
■ Mapping the position vector from empirical (emp.) 

magnetosheath into KF magnetosheath model

■ Assumption:

Distance to magnetopause remains constant when 

scaled to magnetosheath thickness in 

magnetopause normal direction

→ MP normal mapping

■ Allows computation of potentials for custom shaped, 

convex BS and MP shapes as boundaries

4. Simulation
■ Hybrid code A.I.K.E.F. (Müller et al., 2011)

■ Kinetic description of ions

■ Electrons treated as a fluid

■ Duskward IMF with 𝐵0 = 20 nT

■ Solar wind density 𝑛0 = 30 cm−3

■ Solar wind velocity 𝑢0 = 400 km s−1

■ Data from x-y-plane in MSM coordinate system
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Procedure
1. Compute distance to MP in MP normal direction 

2. Compute thickness of empirical magnetosheath

3. Compute thickness of KF magnetosheath

4. Map the position vector onto the KF system

5. Evaluate u and v in the KF system

6. Compute the potentials

■ Non-conformal map

→ Result is not an exact solution of the Laplace equation

■ Grid orthogonality along magnetopause

Fig. 1: Empirical and KF magnetosheath boundaries.

Fig. 5: Magnetic field in emp. magnetosheath 

domain and duskward IMF.

Fig. 4: Iso-contour lines with 𝑢 = const. and 

𝑣 = const. in the emp. magnetosheath model.

Fig. 2: Iso-contour lines with 𝑢 = const. and 

𝑣 = const. in the KF magnetosheath model.

Fig. 3: Magnetic field in KF magnetosheath 

domain and duskward iMF. 5. Results
■ KF model is not able to account for the realistic 

magnetosheath boundaries

■ Scalar potential mapping is a significant 

improvement of the KF model

■ Lack of modeling of the MP currents causes 

deviations in the direction and strength of the 

magnetic field

Fig. 6: Simulated magnetic field around Mercury.
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