Enhancing Satellite Validation in Antarctica:
A Novel K2W Methodology for Comparing Ground-Based Measurements at K-band with Spaceborne Radar Observations Collected at W band

Motivations

 balance of the Antarctic cee SheetGround-based snowfall observations over Antarctica are rare due to the harsh environment and high logistical, equipment maintenance, and operational costs. Therefore, satellite measurements are crucial to provide continent-wide precipitation estimates
Satellite products require extensive validation in Antarctica, both to verify assumptions underlying retrievals and quantify uncertainties. Ground-based validation is not trivial because of differences in sampling areas, blind zones, and the rarity of overpasses during precipitation

Goals

Developing a conversion methodology (K2W) to simulate the W band radar reflectivity and Doppler profiles from ground based Micro Rain Radar at 24
GHz and laser disdrometer observations, relatively common precipitation instruments available at Antarctic research stations, differently from imaing $G H z$ and laser disdrometer observations, relatively common precipitation instruments available at Antarctic research stations, differentiy from imaging
disdrometer or K or W band profilers

Assessing the performance of our approach by comparing the observed CloudSat radar reflectivity profiles

- Obtaining vertical Doppler profiles at W band that could be beneficial for validating measurements from the incoming ESA/JAXA EarthCARE satellite

K2W Methodology

K2W simulates W-band spectra from MRR K-band spectra using appropriate backscattering cross-sections $C_{b k}(D)$ and $v_{t}(D)$
terminal velocity-diameter relationship for precipitation with the aid of disdrometer observations
Scattering Database

Conclusions

Results
Simulation of W-band Doppler Spectra MRRK-band Tin

Overpass: 5:00 UTC on 4 December 2018 Minimum distance from MZS: 22.9 km

Considered lowest CloudSat range gates
$(720,960 \mathrm{~m}$ a.s.I)
8 MRR range gates averaged to match
CloudSat vertical resolution

Comparison CloudSat-K2W profiles

$$
\begin{aligned}
& \text { Vertical profiles of } W \text {-band reflectivity obtained by } \mathrm{K} 2 \mathrm{~W} \text { around the CloudSat overpass } \\
& \text { were time averaged for comparison with the horizontal averaged CloudSat } Z_{e} \text { withithin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { were time averaged for comporison with the horizonta averaged CloudSat } Z_{\mathrm{e}} \text { within a } \\
& \text { certain distance from } \mathrm{MzS}
\end{aligned}
$$

Satellites are the major source of information about pecintation in Antartica //) develorent of reliable validation strategy for the satellite measurements is in high demand

K2W methodology combines MRR Doppler spectra and disdrometer data to simulate 94 GHz reflectivity and Doppler measurements
K2W was assessed using CloudSat overpass over MZS for a typical snowfall event: K2W reproduces CloudSat Ze profile with 0.2 dB mean difference at the lowest radar range bin and 0.5 dB difference on average below 1 km altitude
K2W simulates the Ze profile within the CloudSat blind zones. This unattenuated W-band profile can be used to evaluate spaceborne W-band radar retrievals
K2W simul
,
Pairs of MRR-disdrometer are available in many ground observation sites worldwide and in most of the research stations in

References

$\begin{aligned} & \text { Dever } \\ & \text { ben } \\ & \text { Ren } \end{aligned}$

