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1. Motivation

• Normal modes provide some of the only direct constraints on density

• There is a lack of modern computational tools for accurate low-frequency spectra

• Self-coupling codes have significant errors (Akbarashrafi et al., 2018)
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Fig. 1: Comparison of errors in self-coupling vs the size of the signal from density

• Full coupling still has approximations in both density and boundary terms (Al-Attar et al.,
2018)

Fig. 2: Tomography model S40RTS (Ritsema et al., 2011) at

the CMB

The LLSVPs are two large anomalies that
consistently appear in tomography models.
Their dynamic interpretation is still not
fully known.
Knowledge of their density from normal
mode observations is important in determin-
ing their influence.

2. Normal mode coupling

• The elastic wave equation in the frequency domain (Dahlen & Tromp, 1998)

Hu + 2iωΩ× u = ω2u (1)

• Expanding the wavefield using the 1D normal modes as a basis yields a matrix differential
equation

S(ω)u = −ω2Tu + 2iωWu + V u = f(ω) (2)

Calculating matrices

• Traditionally done uing Wigner-Eckart theorem, e.g. for kinetic energy

Tk,k′ =
∑
st

(−1)m
[
(2l + 1)(2s + 1)(2l′ + 1)

4π

]1/2(
l s l′

−m t m′

)
(3)

×

{∫ a

0

δρ̃stTρr
2dr +

∑
d

d2δd̃st[Td]
+
−

}
• Ellipticity treated in a perturbative manner

Solving the matrix differential equation

• Non-standard eigenvalue/eigenvector problem

• Adds inaccurracy to solution for non-simple rheologies

The iterative direct solution method (IDSM) is an exact, efficient alternative suggested
by Al-Attar et al. (2012), which solves for u(ω) = S−1(ω)f(ω) and performs an inverse
Fourier-Laplace transform

3. The referential formulation

• Mapping Φ between geometrically spherical reference
planet and physical planet

• The boundary conditions on solid-fluid boundaries are
complicated

Fig. 3: Schematic of a slipping boundary from Woodhouse and Dahlen (1978)

4. Exact matrices

• Normal modes don’t satisfy tangential slip condition in
referential body which is〈

(Def Φ)−1 · (u2 − u1), n̂
〉
= 0 (4)

• Require the set of functions ûn = (Def Φ) · un where
un are the set of 1D normal modes

• Matrices are

Tn′n =

∫
M

ρ⟨ûn, ûn′⟩d3x (5)

Wn′n =

∫
M

ρ⟨Ω× ûn, ûn′⟩d3x (6)

Vn′n =

∫
M
{ρ⟨Ω× (Ω× ûn)− γn, ûn′⟩

+ ⟨Λ · Def ûn,Def ûn′⟩}d3x

+

∫
Σ

ϖ⟨Q · [ûn]+−,Def ûn′]−⟩dS

+

∫
Σ

ϖ
〈
Def ûn]−, Q · [ûn′]+−,

〉
dS

−
∫
Σ

ϖ⟨S · [ûn]+−, [ûn′]+−⟩dS (7)

• We need to be able to solve exactly for the gravitational
potential and its perturbation under motion

• The form of the matrix equations is still the exact same,
ie the second part of the problem is unaffected and the
IDSM can be used

• Calculation of matrix elements will be done via “spec-
tral”method (Lognonné & Romanowicz, 1990)

5. Gravitational potential

• Weak form for the gravitational potential ζ defined on the
reference body with χ as the test function is (Maitra & Al-
Attar, 2019)

(8)
A(ζ, χ) =

∫
B
⟨a∇ζ,∇χ⟩d3x+

∑
lm

(l+1)bζlm(b)χlm(b)

= −4πG

∫
M̃

ρχd3x

• a = JF−1F−T where Fij = ∂ξi/∂xj and ξ maps the refer-
ential to the physical body

• Separate into a radial and a spherical harmonic basis, ie

ζ(r, θ, φ) =
N∑
n=1

L∑
l=0

l∑
m=−l

ζlmnhn(r)Ylm(θ, φ) (9)

• Solve without deriving the matrix Aij = A(χi, χj)

• Uses generalised spherical harmonic (GSPH) transforms

• Motion is a perturbation to the equilibrium mapping
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Fig. 4: Benchmark of matrix-free pseudospectral scheme against integral

solution for the potential within the PREM model

6. Improving the IDSM

• The IDSM enables rapid, accurate compu-
tation

• Decompose S(ω) = S0(ω)S̃(ω) for which
S ≈ S0 and S0 is easily invertible

• Matrix-free iterative scheme ensures paral-
lelisation performed with minimal memory
usage increase via

S(ω)u = −ω2(Tu) + 2iω(Wu) + V u
(10)

• BiCGSTAB and improved parallelisation
result in significantly more rapid code

Fig. 5: Difference between IDSM and eigensolution

Fig. 6: Comparison of time scaling for various solvers

7. Future work

• Matrix elements for referential formulation to be calculated

• Set of basis functions cannot just be normal modes of 1D Earth

• Fully matrix-free implementation possible—efficiency and memory benefits for large cou-
pling calculations

• Benchmarks:

(a) Traditional normal-mode codes with small density and topography variations

(b) Self-benchmarks with different Φ

• Implement adjoint calculations
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Equilibrium
mapping Φ

Reference planet Physical planet

Evaluation of Ax:
Calculate ∇ζ
in GSPH basis

Calculate ∇ζ
spatially

Calculate q = a∇ζ
spatially

Calculate q
in GSPH basis

Calculate A(ζ, χi)
from q

Solution method:

Calculate A0
for ξ = x, via
[A0]ij = A(χi, χj)

Construct pre-conditioner
using A0, ie M ≡ A−1

0

Use an iterative scheme to solve
full problem using M and A


