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e We need to be able to solve exactly for the gravitational
e The form of the matrix equations is still the exact same,
ie the second part of the problem is unaffected and the

Fig. 1. Comparison of errors in self-coupling vs the size of the signal from density

e Full coupling still has approximations in both density and boundary terms (Al-Attar et al.,
2018)

e Matrix elements for referential formulation to be calculated

The LLSVPs are two large anomalies that

: . el IDSM can be used e Set of basis functions cannot just be normal modes of 1D Earth
consistently appear in tomogra models.
. » abbe Srapiy I e Calculation of matrix elements will be done via “spec- e Fully matrix-free implementation possible—efficiency and memory benefits for large cou-
Their dynamlc mterpretatlon 1s still not Fig. 3: Schematic of a slipping boundary from Woodhouse and Dahlen (1978) ., , . : :
tral” method (Lognonné & Romanowicz, 1990) pling calculations

fully known.

Knowledge of their density from normal
mode observations is important in determin-
ing their influence.

e Benchmarks:

(a) Traditional normal-mode codes with small density and topography variations

(b) Self-benchmarks with different ®

e Implement adjoint calculations

Fig. 2: Tomography model S40RTS (Ritsema et al., 2011) at

the CMB
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