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Abstract: A new method of sea ice classification based on feature selection from Gaofen-3 polarimet-
ric Synthetic Aperture Radar (SAR) observations was proposed. The new approach classifies sea ice
into four categories: open water (OW), new ice (NI), young ice (YI), and first-year ice (FYI). Seventy
parameters that have previously been applied to sea ice studies were re-examined for sea ice classifica-
tion in the Okhotsk Sea near the melting point on 28 February 2020. The ‘separability index (SI)’ was
used for the selection of optimal features for sea ice classification. Full polarization parameters (the
backscatter intensity contains the horizontal transmit-receive intensity (σ0

hh), Shannon entropy (SEi),
the spherical scattering component of Krogager decomposition (Ks)), and hybrid polarization parame-
ters (horizontal receive intensity

(
σ0

rh
)
, hybrid-pol Shannon entropy (CPSEi), the correlation coefficient

(ρrh−rv) between the σ0
rh and σ0

rv, and the surface scattering component of m − α decomposition (αs))

were determined as the optimal parameters for the different work modes of SAR. The selected pa-
rameters were used to classify sea ice by the random forest classifier (RFC), and classification results
were validated by manually interpreted ice maps derived from Landsat-8 data. The classification
accuracy of OW, NI, YI and FYI reached 95%, 96%, 98% and 85%, respectively.

Keywords: fine sea ice classification; random forest classifier; polarization SAR; Gaofen-3; feature
selection

1. Introduction

Sea ice in the Arctic is an indicator of climate change and has undergone dramatic
changes because of recent global warming [1]. The changes in Arctic sea ice mainly include
the continuous decreases of sea ice extent, reductions in multi-year ice (MYI) thickness,
and the conversion of increasingly more MYI into first-year ice (FYI) [2]. FYI is becoming
more complex, especially during the summer months. The types and distributions of sea
ice directly affect the Arctic energy budget. For example, the surface albedos of melting ice,
snow-covered MYI, and open water (OW) are, respectively, 65%, 85%, and 7% [3]. Increas-
ing areal fractions of melting ice and OW boost solar radiation input to the Arctic Ocean, in-
tensifying sea ice melt via a positive sea ice—albedo feedback effect [4]. As the sea ice grows
or melts, various types of sea ice, such as new ice (NI), young ice (YI), and FYI, will emerge.
Referring to the definitions of ice type by the Canadian Ice Service (Sea ice: types and
forms—Canada.ca (https://www.canada.ca/en/environment-climate-change/services/
ice-forecasts-observations/latest-conditions/educational-resources/sea/types-forms.html,
accessed on 20 October 2022)), NI is the initial stage of sea ice formation, characterized by a
thickness of less than 10 cm. YI follows NI and is thicker, ranging from 10 to 30 cm, with
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a rough texture. FYI is sea ice that has survived one melt season and is between 30 and
150 cm thick. The properties and characteristics of sea ice can change as it ages and thickens.
For example, FYI may have more brine channels and be more permeable to seawater than
NI, which can affect its reflectivity and, therefore, its contribution to the Earth’s energy
balance [5,6]. Additionally, the thickness and age of sea ice can affect its interactions with
ocean currents and the atmosphere as well as its roles in the carbon and nutrient cycles [7,8].
Accurately classifying sea ice and understanding the differences between these ice types
are important for accurate modeling and predictions of the behavior of the sea ice, and its
impact on global climate [9,10].

Synthetic aperture radar (SAR) is a relatively practical tool for sea ice monitoring due
to its low sensitivity to clouds, rain, and fog as well as its capability for high-resolution earth
observation in daylight or darkness [11]. In recent years, SAR systems have developed
progressively from single polarization (single-pol) to dual polarization (dual-pol) and quad-
polarization (quad-pol). A quad-pol SAR system simultaneously transmits and receives
both linearly horizontal (H) and vertical (V) polarized electromagnetic waves. Amplitude
and phase information of the backscattered signals are recorded for four transmit/receive
channels (HH, HV, VH, and VV). Dual-pol SAR contains two channels (e.g., HH and HV
or VV and VH), whereas single-pol contains only one channel (HH or VV) without phase
information [12]. Dual-pol SAR scenes, normally with HH and HV channels, are favored
for monitoring sea ice over vast areas due to their wide coverage [13–15]. For example, the
RADARSAT-2 ScanSAR Wide mode images have a swath width of approximately 500 km.
Compared with dual-pol, quad-pol observations with phase information and higher spatial
resolutions can provide more information on sea ice [13,15,16]. However, the unprece-
dented level of detailed scattering information given by quad-pol SAR observations comes
at the cost of a doubled average transmission power, low width coverage, and a restricted
range of acceptable incidence angles, compared with single-pol or dual-pol SAR observa-
tions [17,18]. Moreover, the narrow swath of quad-pol SAR (e.g., RADARSAT-2, 50 km;
TerraSAR-X, 15 km; and ALOS PALSAR, between 20 and 60 km) limits the practical appli-
cations of these observations [19].

More recently, the compact polarimetry (CP) SAR mode has been proposed [17,18].
The essence of the CP system is a coherent dual-pol SAR with one polarization transmitted
and two orthogonal polarizations received. Though not fully polarimetric, CP SAR has been
shown to obtain similar results as quad-pol SAR systems in sea ice classification [20,21]. CP
SAR systems simplify system design and maintenance while expanding the swath width
compared with quad-pol systems [17,18]. This system is an optimal compromise between
resolution and coverage. For example, the available swath width of the CP SAR from
the RADARSAT Constellation Mission (RCM) is 350 km with a spatial resolution of 50 m.
These values are still suitable for the application of CP SAR to sea ice observation, given
that it is a large-scale feature [17,18,22]. Presently, three Earth-observing satellite systems
are equipped with the advanced hybrid-polarity (hybrid-pol) CP design, which transmits
circular polarization and receives two orthogonal linear polarizations. They are the Radar
Imaging Satellite (RISAT-1), launched in April 2012 (India), the ALOS-2, launched in May
2014, and the RCM satellites, launched in June 2019. Prospective applications of hybrid-pol
SAR observation have generated considerable attention in sea ice monitoring [16,19,21,23,24].

With the progression in SAR systems from single-pol to dual-pol, quad-pol and
hybrid-pol, a large number of parameters have been proposed for sea ice classification.
Originally, the backscatter intensity and polarization ratio (PR) were used to discriminate
OW from sea ice [25,26] or to identify ice types [27–30]. Moreover, the parameters using
polarization decomposition or eigenvector decomposition from quad-pol SAR have been
used to improve the accuracy of sea ice classification [31–35]. Studies using simulated
hybrid-pol and real hybrid-pol data to obtain parameters have also proven to be effective for
sea ice classification [16,19,21–23]. Many of these works in the studies above concentrated
on the separation of OW and sea ice, classification between FYI and MYI, and analyses
of various sea ice types and properties using different polarimetric parameters [19,22,26].
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However, classification studies for fine sea ice with high spatial resolution and many sub-
types of sea ice are rather few. Liu et al. [15] used the dual-pol RADARSAT-2 ScanSAR
(HH + HV) data to classify sea ice as OW, NI, gray ice, second-year ice, and MYI based on
the support vector machine methodology. Zhang et al. [30] employed deep convolutional
neural networks to classify sea ice into four categories, NI, thin first-year ice, thick first-
year ice, and old ice, by using dual-pol Gaofen-3 (GF-3) data (VH + VV). Both of these
works [15,30] used the ice maps provided by the CIS as a reference and obtained high
accuracy (over 90%) for the classification results. As mentioned before, the traditional
dual-pol data could not provide phase information. They are used to classify ice types
only based on the backscatter intensity or texture feature. Moreover, quad-pol and hybrid-
pol can provide both intensity and phase information, related to the physical scattering
mechanism of sea ice, surface roughness, dielectric coefficient, and structure, which can
improve the classification accuracy.

Therefore, there are two facts that hinder fine sea ice classification. Firstly, sea ice
is complex, dynamic, and interconnected with the environment, particularly FYI [36,37],
and it is difficult to collect actual sea ice observations with both large area coverage and
high spatial resolution. Secondly, even though a large number of SAR characteristics have
been used to classify sea ice, it remains unclear which parameters are the most effective for
different types of sea ice and different environmental conditions.

In this study, a methodology is developed for fine sea ice classification, particularly
OW, NI, YI, and FYI based on feature selection from GF-3 quad-pol SAR. All the parameters
related to both the intensity and the phase information from quad-pol and compact-pol
are taken into account. The ice types are identified in SAR images using visible images as
a reference. The key point of this work is to identify the optimal parameter combination
for fine sea ice classification from 70 potential parameters using the separability index
(SI) method.

The paper is organized as follows: Section 2 presents the dataset, including the Landsat-
8 optical images, GF-3 quad-pol SAR images, and weather reanalysis data. In Section 3, the
70 parameters used for sea ice classification are summarized. Section 4 demonstrates how
to use the separability index (SI) to select the optimal sea ice classification parameters and
how to incorporate these parameters into the training of a random forest classifier (RFC) for
subsequent sea ice classification. The classification results are given in Section 5. Section 6
is the discussion of our results and the conclusions are presented in Section 7.

2. Dataset

The study utilizes two distinct types of remote sensing data. The first type is GF-3
quad-pol SAR data, and the second type is Landsat-8 optical data. We collocated all GF-3
and Landsat-8 data from a worldwide latitude region bounded by 50–90◦N and 50–90◦S
from August 2018 to August 2022. In addition to imaging time and area, during the time
lag between optical and SAR data, sea surface temperature and wind speed were also
taken into account. Six SAR images and two Landsat-8 images were finally selected, as
shown in Figure 1a, over the Okhotsk Sea. Landsat-8 scenes, acquired at 01:41 (UTC) on
28 February 2020, are denoted by labels L1 and L2 and their extents are shown by blue
rectangles. GF-3 images, acquired at 21:06 (UTC) also on 28 February 2020, are denoted
by labels S1–S6 and their extents are shown by red rectangles. The background color
in Figure 1a is the hourly average wind speed between the SAR imaging time and the
Landsat-8 imaging time; arrows show the wind vectors. Figure 1b displays the hourly
average wind speed at the center of each SAR scene on the day of imaging. The S1, S2,
and S3 images are accompanied by wind speeds greater than 6 m/s, whereas wind speeds
for S4, S5, and S6 are typically less than 5.5 m/s. On that day, we reviewed the sea
surface temperature data, which was almost 0 degrees, and sea ice concentration data, from
the University of Bremen (https://seaice.uni-bremen.de/databrowser/, accessed on 20
October 2022), which showed a slight decrease (from 76.4% to 76.1%) in the study area
from 28 February to 29 February 2020. This implies that the sea ice may be close to melting,

https://seaice.uni-bremen.de/databrowser/
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by combining the surface temperature and the variation trend of the sea ice concentrations.
All meteorological data are ECMWF reanalysis data (https://cds.climate.copernicus.eu/,
accessed on 20 October 2022).
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provide systematic coverage of the global landmass with a spatial resolution of 30 m for 
visible data, namely the NIR, and SWIR; 100 m for thermal data; and 15 m for panchro-
matic data. The data has been widely used in crop classification [38], water body extraction 
[39], and sea ice identification [40]. 

In this study, the two Landsat-8 images are a Level-1T product with 30 m pixel spac-
ing and less than 10% cloud cover (Figure 2). The image preprocessing, including atmos-
pheric and radiometric corrections, was performed by ENVI 5.3. From Figure 2, we see 
that most of the imaged areas are covered with YI and FYI. For example, the upper left 
area of Figure 2a appears gray, which corresponds to the relatively dark appearance of YI 
in the optical image; by comparison, white areas in Figure 2a,b are FYI. The black area in 
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detailed investigation. 

Figure 1. Data information. (a) The coverage of two Landsat-8 denoted by L1 and L2 are represented
with blue rectangles, and the coverage of six GF-3 images, denoted by S1–S6, are delineated with
red rectangles. (b) Background colors and arrows represent wind speeds and directions. For the day
and time of imaging, the hourly averaged wind speed in the center of each SAR image is shown
in panel (b). Blue and red solid vertical lines denote the imaging times of the Landsat-8 and SAR
images, respectively.

2.1. Landsat-8

Landsat-8 was launched on 11 February 2013, with two science instruments—the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These two sensors
provide systematic coverage of the global landmass with a spatial resolution of 30 m for
visible data, namely the NIR, and SWIR; 100 m for thermal data; and 15 m for panchromatic
data. The data has been widely used in crop classification [38], water body extraction [39],
and sea ice identification [40].

In this study, the two Landsat-8 images are a Level-1T product with 30 m pixel spacing
and less than 10% cloud cover (Figure 2). The image preprocessing, including atmospheric
and radiometric corrections, was performed by ENVI 5.3. From Figure 2, we see that
most of the imaged areas are covered with YI and FYI. For example, the upper left area
of Figure 2a appears gray, which corresponds to the relatively dark appearance of YI in
the optical image; by comparison, white areas in Figure 2a,b are FYI. The black area in
the lower right of Figure 2b is land. The data in the red rectangle, which covers an area
with a length of 12 km and a width of 9.6 km in Figure 2b, has been chosen for more
detailed investigation.

2.2. GF-3 SAR Images

GF-3, with a C-band SAR capable of full polarization mode, was launched in August
2016. It is China’s first satellite carrying a multi-pol C-band SAR (https://spaceflight101
.com/chinas-long-march-4c-lifts-off-with-gaofen-3-radar-satellite/, accessed on 20 Octo-
ber 2022). Employing a multi-polarized active-phased array antenna, the GF-3 SAR can
achieve a nominal resolution as high as 1 m in Spotlight mode and a large swath width
of 500 km in Wide ScanSAR mode. There are three quad-pol modes: Stripmap I (QPSI),
Stripmap II (QPSII), and wave mode [41]. In our study, QPSI mode data was used, with a
30-km ground swath and an 8-m nominal resolution. The data is single-look complex, with
incidence angles ranging from 20◦ to 41◦. The GF-3 data have been used in retrievals of sea
state parameters, ship detection, and sea ice monitoring [42].

https://cds.climate.copernicus.eu/
https://spaceflight101.com/chinas-long-march-4c-lifts-off-with-gaofen-3-radar-satellite/
https://spaceflight101.com/chinas-long-march-4c-lifts-off-with-gaofen-3-radar-satellite/
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Figure 2. Landsat-8 RGB image (R = band4, G = band3, B = band2) images. (a) is L1; (b) is L2.

For each of the six GF-3 SAR images (Figure 1), the assumed incidence angle was taken
as the mid-point of the swath, ranging from 35.23◦ to 37.20◦. There were no grazing or
shadow effects. The HH intensities of the six SAR images are shown in Figure 3. Compared
with Landsat-8 data, these SAR images exhibit more complex distributions and have
higher resolutions, which indicates that richer sea ice information can be retrieved. The
red rectangular areas of panel S5 in Figure 3 and panel L2 in Figure 2b are in the same
geographical location. Figure 4 enlarges this area to show the different types of sea ice
more clearly.

The imaging time of the Landsat-8 and GF-3 images was on 28 February 2020, which
corresponds to the transition period between late winter and early spring at these relatively
low latitudes (about 55–56◦N). Under these conditions, with above-freezing temperatures,
the appearance of liquid water on the sea ice surface is possible, which complicates sea
ice classification. Our analysis of the high-resolution collocation of Landsat-8 and GF-3
observations in Figure 4 indicates different types of sea ice, specifically OW, NI, YI, and
FYI. As shown in Figure 4a, in the optical image, the dark area is NI, often near OW. YI
is the grey color and FYI is displayed with white color due to its high albedo. In contrast,
Figure 4b, depicting the HH images of GF-3, shows that YI has the highest intensity, while
those of OW, NI, and FYI have similar return intensities. This means that OW, NI, and
FYI cannot be differentiated only by intensity. Visual evaluation of these two categories of
data shows that optical data outperforms the SAR data in its ability to discriminate sea ice
types and OW. Therefore, in our study, optical data were used as a vital reference to help
us interpret the sea ice types in the SAR images.
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Figure 4. Different types of sea ice in coincident landsat-8 (a) and GF-3 (b) images. The area is an
enlargement of the red rectangular areas in panel L2 in Figure 2b and S5 in Figure 3 and includes OW,
NI, YI, and FYI. The scale is located to the right of (b).
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3. SAR Parameters

In this section, the 70 parameters derived from the SAR images are summarized, and
then optimal parameters for input to the sea ice classification are selected using the SI
method. Later, the sea ice classification is illustrated using RFC.

Numerous SAR parameters have been employed to classify ground objects. Here, we
explore 70 typical SAR parameters for the possible classification of sea ice. These parameters
can be divided into two major categories according to SAR systems: quad-pol parameters
and hybrid-pol parameters. The quad-pol parameters include backscatter intensity of dif-
ferent polarizations, co-polarized (co-pol) phase difference, co-pol correlation coefficients,
backscattering ratios of different polarizations, total power, secondary parameters with de-
composition, and parameters from eigenvalue-decomposition. The hybrid-pol parameters
contain backscatter intensity, backscattering ratios, correlation coefficients, Stokes vector
parameters, Stokes child parameters, and decomposition parameters.

3.1. Quad-Pol SAR Parameters

The backscatter intensity contains the horizontal transmit-receive intensity (σ0
hh), verti-

cal transmit-receive intensity (σ0
vv), and the horizontal transmit-vertical receive intensity

(σ0
hv), which are widely used in the inversion of sea ice concentration and sea ice classifi-

cation [43,44]. The co-pol phase difference (∅hh−vv), co-pol correlation coefficient (ρhh−vv),
and backscattering ratios co-pol ratio (Rhh−vv), cross-pol ratio (Rhh−hv, Rhv−vv) and depolar-
ization ratio (Rdepol), are sensitive to sea ice thickness and differences between sea ice and
water [26,45,46]. Total power (Span) indicates the total backscattered power and is a basic
parameter that is used to differentiate sea ice classes [45,47]. Huynen [48] was the first to
formalize target decomposition theorems in 1970, but their origins may be traced to Chan-
drasekhar’s research on light scattering by small anisotropic particles. Since the publication
of this initial paper, there have been numerous other proposed decompositions [48–56] that
can be categorized into four categories [57].

Decompositions were based on the dichotomy of the Kennaugh matrix K [48,53,56].
In this study, we select three parameters based on Huynen decomposition, which are
Huynen_T11 (T11), Huynen_T22 (T22), and Huynen_T33 (T33). T11 represents the total
scattered power from the regular, smooth, and convex parts of the scatterer. T22 denotes
total symmetric or irregular depolarized power, and T33 stands for total non-symmetric
depolarized power.

Decompositions were based on “model-based” decompositions of the covariance C3
matrix or the coherency matrix T3 [52,55,58]. In the study, we select two sets of parameters
from the three-component Freeman decomposition and the four-component Yamaguchi
decomposition. They are Freeman_dbl (Fd), Freeman_vol (Fv), Freeman_odd (Fs), Yam-
aguchi_dbl (Yd), Yamaguchi_vol (Yv), Yamaguchi_odd (Ys), and Yamaguchi_hlx (Yh). The
postfix ‘dbl’ denotes double-bounce scattering power; ‘odd’ denotes surface scattering
power; ‘vol’ denotes volume scattering power; and ‘hlx’ denotes helix scattering power.

Decompositions used an eigenvector or eigenvalues analysis of the covariance C3
matrix or coherency matrix T3 [51,53,59,60]. In this study, two sets of parameters are se-
lected from van Zyl methods and the entropy (H)/anisotropy (A)/alpha (α) decomposition
method proposed by Cloude and Pottier in 1996 and 1997. One set contains Zyl1, Zyl2, and
Zyl3, which represent odd bounce reflections, even bounce reflections, and other reflections,
respectively. The other contains four parameters: H, A, α, λ, where H reflects the random-
ness degree of the scattering of the targets; A is complementary to H and improves the
discrimination of different types of the scattering processes. The parameter α corresponds
to a continuous change from surface scattering to double bounce scattering and λ represents
the average scattered power.

Decompositions employed a coherent decomposition of the scattering matrix S [54,61,62].
We choose the parameters from the Krogager decomposition, which has three components:
Ks, Kd, and Kh. The component Ks denotes the spherical scattering component, Kd denotes
the double-bounce scattering component, and Kh represents the helix scattering component.
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In addition to the above parameters, there are also some parameters proposed by
researchers based on eigenvalues, including Shannon entropy (SEi, SEP), target randomness
(PR), polarimetric asymmetry (PA), polarization fraction (PF), pedestal height (PH), and
relative kurtosis (PK). These features complement the above eigenvalue-based decomposi-
tion, which not only reflects the intensity information but also includes the polarization
and depolarization information. These have been verified to be closely related to sea ice
surface roughness, applicable to the distinction among sea ice, OW, and snow [46].

3.2. Hybrid-Pol SAR Parameters

The hybrid-pol Stokes vector (g0, g1, g2, g3) can be directly derived from the quad-pol
correlation matrix. Each parameter has a distinct physical significance: g0 is the total
power of the wave; g1 is the power difference between the horizontal and vertical polarized
components; g2 is the power in the linearly polarized components with tilt angles of 45◦ or
135◦; and g3 is the power in the left- and right-handed circularly polarized components
of the plane wave [63]. The parameters of hybrid-pol backscatter intensity contain the
right-circular transmit-receive intensity (σ0

rr), the right-circular transmit and left-circular
receive intensity (σ0

rl), the left-circular transmit-receive intensity (σ0
ll), the right-circular

transmit and horizontal receive intensity (σ0
rh) and the right-circular transmit and vertical

receive intensity (σ0
rv). These parameters represent the power of various transmission and

reception modes [64]. They can all be simulated from the quad-pol SAR data without
developing new hardware [19].

Similar to quad-pol SAR, hybrid-pol SAR data also contains correlation coefficients
(ρrh−rv, ρrr−ll). ρrh−rv denotes the correlation coefficient between the σ0

rh and σ0
rv, and ρrr−ll

denotes the correlation coefficient between σ0
rr and σ0

ll . We calculated (Rrh−rv) as the ratio of
σ0

rh and σ0
rv, (Rrr−rl) as the ratio of σ0

rr and σ0
rl , (Rrl−ll) as the ratio of σ0

rl and σ0
ll , and (Rrr−ll)

as the ratio of σ0
rr and σ0

ll [64].
With the advance of hybrid-pol SAR, many decompositions have been devel-

oped [63,65]. They are m− χ, m− δ, m− ψ and m− α, which have demonstrated utility in
oil slick detection [66] and sea ice melt monitoring [16,64]. Here, m indicates the degree of
polarization, which is the ratio of the polarized power to the total power, χ is the ellipticity,
δ is the relative phase, ψ is the orientation and α is the polarization angle.

The four decompositions can be divided into three components. Division by m− χ
decomposition gives (χs, χd, χv), where χs indicates single-bounce (Bragg) backscatter, χd
represents double-bounce, and χv corresponds to randomly polarized backscatter. Division
by m− δ decomposition gives (δs, δd, δv), where δd is related to double-bounce scattering, δv
is related to volumetric scattering, and δs is related to surface scattering. Division by m− ψ
gives (ψs, ψd, ψv), where ψs is sensitive to orientations of −90 degrees, ψd is sensitive to
orientations of +90 degrees, and ψv represents the randomly polarized constituent. Division
by m− α decomposition gives (αs, αd, αv), where αs is sensitive to a polarization angle
of 0 degrees, αd is sensitive to a polarization angle of 90 degrees, and αv is sensitive to
dominantly depolarized backscatter. It is worth noticing that the third component (χv, δv,
ψv, αv) of the proposed four decomposition methods is expressed in the same way.

Additionally, Charbonneau et al. (2010) proposed the right circular polarization ratio
(µC) and ellipticity (µE) [65]. They are sensitive to sea ice characteristics. In a similar
way to quad-pol SAR, hybrid-pol SAR can also define the Shannon entropy intensity and
polarimetric components (CPSEi, CPSEP) [22], which contain similar information as given
by quad-pol SAR data.

A total of 70 parameters from quad-pol and hybrid-pol SAR are used in this study, as
summarized with relevant references in Table 1.
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Table 1. Polarimetric parameters in this study.

SAR Mode Sub-Class Parameters Description Reference

Quad-pol

Based on backscatter
intensity and

polarization features

σ0
hh, σ0

vv, σ0
hv backscatter intensity(dB)

[45]

∅hh−vv co-pol phase difference
ρhh−vv co-pol correlation coefficients

Rhh−vv, Rhh−hv, Rhv−vv backscattering ratio
Rdepol depolarization ratio
Span total power

Based on polarization
target decomposition

T11, T22, T33 Huynen decomposition [48]

Fd, Fv, Fs three-component freeman
decomposition [52]

Yd, Yv, Ys, Yh four-component Yamaguchi
decomposition [55]

Zyl1, Zyl2, Zyl3 vanZyl decomposition [60]
H, A, α, λ H/A/α decomposition [51]

Ks, Kd, Kh Krogager decomposition [54]

Other parameters

SEi, SEP Shannon entropy [67]
PR target randomness [68]
PA polarimetric asymmetry

[69]PF polarization fraction
PH pedestal height [70]
PK relative kurtosis [71]

Hybrid-pol

Stokes parameters g0, g1, g2, g3 Stokes vector elements [63]

Based on hybrid-pol and
circle-pol backscatter

intensity

σ0
rr, σ0

rl , σ0
ll , σ0

rh, σ0
rv hybrid-pol backscatter intensity [22]

ρrh−rv, ρrr−ll correlation coefficients
[22,65]Rrh−rv, Rrr−rl , Rrl−ll , Rrr−ll hybrid-pol backscattering ratio

Hybrid-pol
decomposition

m, χ, χs, χd, χv m− χ decomposition

[17]
m, δ, δs, δd, δv m− δ decomposition

m, ψ, ψs, ψd, ψv m−ψ decomposition
m, α, αs, αd, αv m− α decomposition

Other parameters µC, µE
circular (right) polarization ratio and

ellipticity. [65]

CPSEi, CPSEP hybrid-pol Shannon entropy [67]

4. Methods

It is important to reduce the parameter set and determine which parameters are
optimal for sea ice classification [64]. If the spatial dimensions of the features are too small,
it may not be possible to identify the characteristics of sea ice, which makes it difficult
to achieve the desired classification results. Conversely, using a considerable number of
parameters will lead to data redundancy, which not only reduces the classification accuracy
but also increases the computational cost [72]. Therefore, it is important to select the optimal
features, from the high-dimensional feature space. Here, we introduce the Separability
Index (SI) method, which is widely used for feature extraction [72–74].

4.1. Separability Index (SI)

SI is a binary classification feature selection method that can be used to assess the
separability of object features and select the appropriate features for target identification
and classification [73,74]. The SI method between a pair of class-specific separations is
defined as the following Equation (1):

SI =
|µ1 − µ2|
σ1 + σ2

(1)

where µ1, σ1, and µ2, σ2 denote the mean and the standard deviation of two categories of a
feature, respectively. In general, the features with a SI value between 0.8 and 1.5 are possible
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candidates to be used in classification. When the SI value of a feature is over 2, it indicates
that this feature can be completely separated from all categories [72,75]. The method has
been widely used as an effective feature selection methodology in crop identification and
oil spill detection [74,76], and it is logical to expand this approach for the determination of
ideal parameters for classifying sea ice.

The SI value is calculated for any two combinations of the following four types of
sea ice: OW and NI, OW and YI, OW and FYI, NI and YI, NI and FYI, and YI, and
FYI. Parameters where SI is greater than 0.8 in any combination was utilized as valid
classification features for sea ice.

4.2. Parameters Selection

For the selection of class-specific data, we determined that the SAR image S5 (shown
in Figures 1 and 3) provided the best match to the reference optical data from Landsat-8,
that also included a diversity of ice types (see Figure 4). The match between S5 and the
optical data was ideal since the variance of wind speed in the S5 coverage area was the
least for all SAR images, as shown in Figure 1b. Sample areas of sea ice types in S5 were
determined by matching optical data (Figure 5).
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Figure 5. Different types of sea ice, with the Landsat-8 image on the left and the S5 SAR image of the
corresponding region on the right. Red regions represent OW, blue regions are NI, orange regions are
YI, and green regions are FYI.

The distribution areas and coverage of the four ice types in Figure 5 are dramatically
different. Among the four ice types, FYI covered the most area, while OW covered the least.
Initially, we sampled 255,379 pixels of FYI and 3056 pixels of OW. To ensure the same size
of each type of ice and OW sample, pixel counts of the three types of sea ice and OW were
sub-sampled to 3000 pixels using an isometric sampling method. Based on the sub-sampled
pixels of each type, the SI between each ice type for the 70 parameters was calculated. The
results are shown in Figure 6.

The SI values for parameters between six combinations of two different types of sea
ice and OW are shown in Figure 6. The parameters’ names are on the left of each row, and
the SI values between ice type pairs are presented from left to right, in each column: OW
and NI; OW and YI; OW and FYI; NI and YI; NI and FYI; and YI and FYI, respectively.
In each row, if the SI is greater than 0.8, then the parameters represented by that row can
distinguish ice-type pairs in the corresponding column; but if all SI values are greater than
or equal to 0.8 (thereby highlighted in yellow), then this parameter satisfies the fine sea
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ice classification. We analyzed the total number of parameters with SI values above the
0.8 threshold between the ice-type pairs; results are shown in Table 2. The first column in
Table 2 shows the ice type pairs; the second and third columns contain the possible quad-
pol and hybrid-pol parameters, respectively; and the final column displays the number of
parameters and the average SI value for the parameter group. It is found that 52 parameters
can be used to distinguish YI from OW, but only 25 can be used to distinguish NI from
FYI. These results can aid in the resolution of pair-wise OW and different types of sea ice
classification problems.
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Figure 6. SI value for parameters between six combinations of two different types: OW and NI; OW
and YI; OW and FYI; NI and YI; NI and FYI; and YI and FYI, with the quad-pol parameters on the left
and hybrid-pol parameters on the right. The names of parameters are on the left side of the table. The
color indicates the value of SI, and all values greater than or equal to 0.8 are highlighted in yellow.

From Figure 6, we find that 19 parameters satisfy the SI threshold requirement of
0.8, including the quad-pol parameters (σ0

hh, T11, λ, Fs, Ys, Ks, SEi, Span) and hybrid-pol
parameters (g0, g3, σ0

rl , σ0
rh, σ0

rv, ρrh−rv, αs, αd, ψs, ψd, CPSEi). All of these parameters
are able to provide fine sea ice classification. The distributions of the 19 parameters that
satisfy the SI threshold requirement of 0.8 are shown as boxplots, according to the four
ice types in Figure 7. Despite overlapping ranges, the median and mean values of these
19 parameters were consistently different for the four ice types. The overlapping ranges
indicate that it is still potentially difficult to directly classify all four ice types with a single
parameter. Additionally, distinct measures of the central tendency for different types of sea
ice support the combination of multiple parameters to enhance classification accuracy. In
the boxplots in Figure 7, we note that all parameter values present the coincident behavior
that OW < NI < FYI < YI. This interesting result presents two points. On the one hand, it
increases our confidence in distinguishing different sea ice types by using 19 parameters.
On the other hand, it also points out that there is still redundancy among the 19 parameters,
as they show similar data distribution features among the different categories of sea ice.
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Table 2. Summary of feasible parameters for different types of sea ice classification.

Type Pair Quad-Pol Parameters Hybrid-Pol Parameters Total

OW, NI
σ0

hh, σ0
vv, Rhh−hv, Rhv−vv, Rdepol ,

ρhh−vv, T11, α, H, λ, Ks, Fs, Ys, SEi,
SEP, PF, PH, PR, Span

g0, g3, σ0
rl , σ0

rh, σ0
rv, Rrl−ll , Rrr−rl , ρrh−rv, m, µC,

µE, αs, αd, χs, ψs, ψd, CPSEi
36

SI average is 1.10

OW, YI

σ0
hh, σ0

vv, σ0
hv, Rhh−hv, Rhv−vv, Rdepol ,

ρhh−vv, T11, T22, α, H, λ, Ks, Kd, Fd,
Fv, Fs, Ys, Yv, SEi, SEP, PF, PH, PR,

PK, Span

g0, g2, g3, σ0
rr, σ0

rl , σ0
ll , σ0

rh, σ0
rv, Rrl−ll , Rrr−rl ,

ρrh−rv, m, µC, µE, αs, αd, χs, χd, δd, ψs, ψd, (χv ,
δv, αv, ψv), CPSEi

52
SI average is 2.04

OW, FYI
σ0

hh, σ0
vv, Rhh−hv, Rhv−vv, Rdepol ,

ρhh−vv, T11, α, H, λ, Ks, Fs, Ys, SEi,
SEP, PF, PH, PR, PK, Span

g0, g3, σ0
rl , σ0

rh, σ0
rv, Rrl−ll , Rrr−rl , ρrh−rv, m, µC,

µE, α, αs, αd, χs, δs, δd, ψs, ψd, (χv , δv, αv, ψv),
CPSEi, CPSEp

45
SI average is 1.70

NI, YI
σ0

hh, σ0
vv, σ0

hv, ρhh−vv, T11, T22, H, λ,
Ks, Kd, Fd, Fv, Fs, Yv, Ys, SEi, SEP, PF,

PH, PR, PK, Span

g0, g2, g3, σ0
rr, σ0

rl , σ0
ll , σ0

rh, σ0
rv, ρrh−rv, m, µC, µE,

αs, αd, χs, χd, δd, ψs, ψd, (χv , δv, αv, ψv), CPSEi
46

SI average is 1.48

NI, FYI σ0
hh, T11, α, H, λ, Ks, Fs, Ys, SEi, SEP,

PR, Span
g0, g3, σ0

rl , σ0
rh, ρrh−rv, m, µC, µE, αs, αd, ψs,

ψd, CPSEi
25

SI average is 0.91

(YI, FYI) σ0
hh, σ0

vv, σ0
hv, T11, λ, Kd, Ks, Fd, Fv,

Fs, Yv, Ys, SEi, Span
g0, g2, g3, σ0

rr, σ0
rl , σ0

ll , σ0
rh, σ0

rv, ρrh−rv, αs, αd, χs,
δd, ψs, ψd, (χv , δv, αv, ψv), CPSEi

34
SI average is 1.08

(OW, NI, YI, FYI) σ0
hh, T11, λ, Fs, Ys, Ks, SEi, Span g0, g3, σ0

rl , σ0
rh, σ0

rv, ρrh−rv, αs, αd, ψs, ψd, CPSEi
19

SI average is 1.53

Since applying all 19 parameters to the classifier will greatly increase the complexity,
further reduction is required due to redundancy. To achieve this, we analyzed the ways in
which these parameters were obtained and the corresponding scattering mechanism. The
quad-pol parameters can be divided into three categories [47,64]:

1. Co-pol intensity parameters (σ0
hh, T11),

2. Total power parameters (λ, SEi, Span),
3. Parameters that indicate surface scattering (Fs, Ys, Ks).

The hybrid-pol parameters can be divided into four categories:

4. Circle-polarized intensity parameters (g3, σ0
rl , σ0

rh, σ0
rv) whose dominant scattering is

surface scattering,
5. Total power parameters (g0, CPSEi), which are similar to the corresponding quad-pol,
6. Depolarization parameters (ρrh−rv) due to multi-scattering
7. Parameters representing the orientation and polarization angle (αs, αd, ψs, ψd).

From each of the seven categories, the parameter with the maximum SI sum for ice
type, for each pair-wise combination was selected (Figure 8).

According to Figure 8, the parameters with the highest SI sums are σ0
hh, SEi, Ks, σ0

rl ,
CPSEi, ρrh−rv, and αs among the above seven groups. It is worth noting that several avail-
able satellites (RISAT-1, ALOS-2, and RCM) carry CP SAR with the right-circular transmit
and coherent linear polarization receive work modes. However, when we compared the
results of σ0

rl and σ0
rh, we found that the SI sum difference between σ0

rl and σ0
rh was only 0.07.

Therefore, in order to make a realistic implementation for CP SAR, we replaced σ0
rl with σ0

rh
as the representative parameter. In order to compare the advantages of various parameters
based on the work modes of the SAR system in the classification, we employed three
distinct groups of parameters to classify sea ice. Group (1) used only quad-pol parameters
(σ0

hh, SEi, Ks); Group (2) used only hybrid-pol parameters (σ0
rh, CPSEi, ρrh−rv, αs); Group (3)

used both quad-pol and hybrid-pol parameters (σ0
hh, SEi, Ks, σ0

rh, CPSEi, ρrh−rv, αs).
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4.3. Random Forest Classifier

The RFC is an ensemble classifier that generates multiple decision trees using randomly
selected subsets of training samples and variables [77]. There are several advantages to
using RFC in remote sensing applications, including the handling of a large number of
variables, identifying missing data and outliers, providing unbiased estimates of out-
of-bag errors, optimizing feature space using variable importance functions, and being
relatively robust to noise and outliers. Thus, RFC has been previously used in sea ice extent
monitoring and sea ice classification [78–80].
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In the study, we compared the accuracy of five machine learning methods using the
matched data from Section 4.2, with 3000 pixels per subclass, and a 9:1 ratio between the
training set and the test set. These corresponding results show that both the training and
testing accuracy of the RFC methodology are higher than those of the other four methods.
The training and testing accuracy of the five methods are shown in Table 3. Zhai et al. [78]
compared the five classifiers in sea ice extent monitoring using scatterometer observations,
and found that RFC exhibits the highest overall accuracy. Our results are consistent with
those of [78]. Therefore, it is reasonable to select RFC as the sea ice classification algorithm.

Table 3. Training and test accuracy of sea ice classification using different machine learning classifiers.

The Classifier Training Accuracy Test Accuracy

Compared Logistic Regression 0.83 0.82
Naive Bayes 0.78 0.77

Random Forest Classifier 0.99 0.92
Gradient Boosting 0.83 0.82

Support Vector Machine 0.84 0.83

We used the RFC function in the sklearn package with Python 3.8 and adjusted the
n_estimators and random_state parameters while keeping other parameters at their default
values. The n_estimators parameter determines the number of trees in the forest, i.e., the
number of base estimators. The random_state parameter controls the mode of forest gen-
eration, with base classifiers being mutually independent. Generally, the larger numbers
for the n_estimators and random_state, the better the model’s performance. However, the
accuracy of a random forest methodology may stop improving or even fluctuate when
n_estimators and random_state reach a certain level. In our study, we found that the training
accuracy and the test accuracy can reach 100% and 92%, respectively, with n_estimators = 64
and random_state = 45, for the training and testing sets. Therefore, in this study, the Ran-
domForestClassifier function was used with n_estimators = 64 and random_state = 45, while
keeping other parameters at their default values.

For parameter selection, 3000 pixels were selected for each type of sea ice and OW,
which were used to calculate the seven parameters (σ0

hh, SEi, Ks, σ0
rh, CPSEi, ρrh−rv, αs).

These parameters were grouped into three categories: using only quad-pol parameters
(σ0

hh, SEi, Ks), using only hybrid-pol parameters (σ0
rh, CPSEi, ρrh−rv, αs), and using both

quad-pol and hybrid-pol parameters (σ0
hh, SEi, Ks, σ0

rh, CPSEi, ρrh−rv, αs). RFCs were trained
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for each of the work modes of the SAR systems: quad-pol, hybrid-pol, and both quad-
pol and hybrid-pol. Three well-trained models were obtained, corresponding to three
different work modes of SAR. The three trained models were used for classifying the six
SAR images S1–S6 in the subsequent analysis.

5. Results
5.1. Classification Results

Three classification results (using only the quad-pol parameters, using only hybrid-pol
parameters, and using both the quad-pol and hybrid-pol parameters) were obtained for
each of the six SAR images S1–S6 (Figure 9), where the OW is denoted in dark blue, the NI
in green, the YI in light blue, and the FYI in light brown. From these results, we qualitatively
observed that the distribution of leads was clearly visible in each SAR image, regardless of
the input parameters. However, for these three ice types, the classification results from the
three groups of input parameters showed significant differences. Comparing the results
among the columns, the largest fraction of FYI appears in the first column with the quad-pol
input parameters. Similarly, the largest fractions of NI and YI appear in the second column
with hybrid-pol input parameters. Finally, results using both quad-pol and hybrid-pol
parameters are between the other two. The red rectangles in (S1–S6) were used to verify
the classification accuracy in the next section.

5.2. Verification

The collocated SAR images and optical data were used to verify the classification
results, specifically in the regions of the five SAR images that are independent of the regions
used to derive input data for the classification, namely S1, S2, S3, S4, and S6. These regions
are marked by red rectangles in Figure 9. The specific operational process was as follows:
for each of the five images, a region was selected, and using the optical image as a reference,
the Span image of the selected region was manually classified. The classification accuracy
for each type of sea ice was calculated as the proportion of correctly classified pixels to
all pixels. In this study, the manual classification was carefully carried out, under the
supervision of an expert (Lijian Shi, National Satellite Ocean Application Service, personal
communication). The results are shown in Figure 10.

The manual classification in Figure 10 is generally smoother, with fewer isolated
regions. The manually classified SAR images in S1, S2, and S3 images do not contain
FYI, and S6 only includes YI and FYI. The number of pixels that were validated using the
manual classification is shown in Table 4, and Table 5 shows the classification accuracy of
the three categories of input parameters for the five validated SAR images.

Table 4. Numbers of validated pixels (Each pixel is eight meters in range and azimuth directions).

SAR Images OW NI YI FYI Total

S1 3198 9914 44,688 0 57,800
S2 518 7545 62,437 0 70,500
S3 7946 19,180 83,208 0 110,334
S4 3410 8160 6976 28,842 47,388
S6 0 0 32,086 113,514 145,600

Total 15,072 44,799 229,395 142,356 431,622

Table 5. Sea ice and open water classification accuracy by different SAR parameter sets.

Parameter Set OW NI YI FYI Total

Quad_pol 95.29% 81.65% 98.76% 77.61% 88.36%
Hybrid_pol 95.58% 84.29% 98.39% 85.95% 92.30%

Quad + Hybrid_pol 91.35% 96.88% 98.89% 83.35% 91.53%
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classification accuracy in the next section. 

Figure 9. Results for sea ice classification for six SAR images using different SAR imaging modes. The
first, second, and third columns present the results from quad-pol, hybrid-pol, and the combination of
both imaging modes, respectively. The colors of dark blue, green, light blue, and light brown denote
OW, NI, YI, and FYI. Red rectangles (S1, S2, S3, S4, and S6) were used to verify the classification
accuracy in the next section.
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Figure 10. Interpretation results for verification. Panels in the left column are Landsat-8 images, taken
as reference, i.e., truth. Panels in the second column are sub-section images of SAR, which match well
with the optical images. The third column contains the manual classification results. The last three
columns show the classification results using the quad-pol parameters, the hybrid-pol parameters,
and finally, both the quad-pol and the hybrid-pol parameters, respectively.

The total accuracy of fine sea ice classification using the three parameter sets reached
more than 88%. The overall accuracy using quad-pol parameters was 88.36%, while the
classification accuracy for OW, NI, YI, and FYI was 95.29%, 81.65%, 98.76%, and 77.61%,
respectively. When hybrid-pol parameters were used, the overall classification accuracy
rose to 92.30%, and the classification accuracy for OW, NI, YI, and FYI was 95.58%, 84.29%,
98.39%, and 85.95%, respectively. Using both quad-pol and hybrid-pol parameters, the
overall classification accuracy was 91.53%, with OW, NI, YI, and FYI classification accuracy
of 91.35%, 96.88%, 98.89%, and 83.35%, respectively.

It is evident that the hybrid-pol parameter set resulted in the highest overall accuracy,
and higher classification accuracy for OW, NI, and FYI than the quad-pol parameter set.
On the other hand, the quad-pol parameter set had better performance for YI classification.
With both quad-pol and hybrid-pol parameters, the overall accuracy was greater than with
only quad-pol parameters and less than with only hybrid-pol parameters. The classification
accuracy of NI and YI was greater than that of hybrid-pol, whereas the classification
accuracy of FYI was greater than that of quad-pol and less than that of hybrid-pol. The
classification accuracy of OW was less than that of quad-pol and hybrid-pol.

In this study, YI classification accuracy was significantly higher than the other ice
types. This is likely due to the consistently unique and strong response of the examined
parameters for YI conditions, relative to the other ice types and open water, as shown in
Figure 2. We expect that a rough surface, combined with a high dielectric constant due to
high salinity, which is characteristic of YI, produced the observed behavior at the C-band
frequency of GF-3 [81].

Overall, if the sea ice classification objective is primarily to focus on the OW and YI, all
three sets of parameters yielded good results. If the numerous forms of FYI are to be sorted,
the hybrid-pol parameters can be considered as providing improved classification accuracy
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compared with quad-pol. Moreover, the simultaneous use of quad-pol parameters and
hybrid-pol parameters can significantly improve the accuracy of identification of NI, which
is very important for the study of sea ice growth.

6. Discussion

In this study, we compared the quad-pol and hybrid-pol parameters for sea ice clas-
sification. The results show that using only the hybrid-pol parameter set can achieve a
higher classification accuracy compared with the other two parameter sets. This is an
interesting issue. We speculate that the reason for this result might be that the selected
hybrid-pol parameters are more sensitive to thin sea ice than the selected quad-pol param-
eters. Raney [17,82] has presented the advantages of the hybrid-pol SAR system, based
on measurement potential, ease of calibration, and favorable implementation. He also
emphasized that any non-circular illuminating polarization would impose preferential
selectivity on the backscattered polarizations in response to the relative alignment between
the principal axis of the incoming elliptically polarized field and the angular orientation
of scene constituents. Charbonneau et al. [65] mentioned that the hybrid-pol outperforms
the quad-pol in discriminating sea ice types and open water. Our conclusion is coincident
with the work of Charbonneau [65]. We also checked this conclusion by using different
classification algorithms: Support Vector Machine and RFC. Both results are in agreement.
The results obtained by using the Support Vector Machine classifier are not shown here.
The reasons why the sea ice classification results of hybrid-pol parameters are better than
those of quad-pol parameters is an issue that clearly needs further study. In a future
investigation, we plan to further validate the effectiveness of the selected parameters in sea
ice classification using real hybrid-pol SAR data, such as that collected by RCM.

It should be noted that the sea ice examined in this study was on, or near the beginning,
of its ice-melt phase, in the late winter/early spring conditions in the Okhotsk Sea, on
28 February 2020. This potentially complicates the sea ice classification, in particular, if the
above-freezing conditions lead to the presence of liquid water in the snow and on the sea
ice. A further consideration may be imposed by the time difference in imaging between the
Landsat-8 and the SAR images (~19 h). Therefore, some physical differences in sea ice and
open water areas, and some possible position differences due to drift, are inherently present
between SAR and optical data, thereby providing possible errors in the classification.

Another consideration is related to the SAR incidence angle. In this study, the swath
width of the quad-pol SAR data was narrow, and there was essentially no influence of the
incidence angle on the SAR parameters. Since the hybrid-pol data used in this study was
simulated from the quad-pol SAR data, the hybrid-pol parameters also only had a small
variation in the range of incidence angles. However, real hybrid-pol SAR images have a
wide swath width and a much larger range of incidence angles [23]. Thus, variation of the
incidence angle across these latter SAR images may have an implication on the classification
results for the hybrid-pol parameters and should be considered in the future.

7. Conclusions

In this study, a method is proposed for fine sea ice classification according to different
polarimetric SAR modes, based on quad-pol GF-3 SAR acquisitions of ice in the Okhotsk
Sea. The method can clearly discriminate OW, NI, YI, and FYI with an overall accuracy
of over 90%. The precise classification of OW, NI, and YI can reach 95%, 96%, and 98%,
respectively. The improvement in sea ice classification is a key factor in increasing the
accuracy of sea ice monitoring and charting, with impacts on weather and climate forecasts
in polar regions.

We selected the optimal quad-pol and hybrid-pol parameters from 70 possible pa-
rameters for sea ice classification using SAR data. The availability of these parameters
in sea ice classification was evaluated using the Separability Index (SI) between different
sea ice classes and open water. Adopting a general threshold of 0.8 for the SI, there are 19
parameters that are effective features for classifying various ice types. These are quad-pol
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parameters:σ0
hh, T11, λ, Fs, Ys, Ks, SEi, Span and hybrid-pol parameters: g0, g3, σ0

rl , σ0
rh, σ0

rv,
ρrh−rv, αs, αd, ψs, ψd, CPSEi.

In this study, we compared the quad-pol and hybrid-pol parameters for sea ice classifi-
cation. Higher classification accuracy (92.3%) was achieved as a result of using hybrid-pol
parameters, compared with quad-pol parameters (88.36%). When using both parameter
sets simultaneously, thin ice (NI and YI) can be classified more effectively, with an accuracy
of over 96%. Based on these findings, we recommend combining the hybrid-pol and quad-
pol parameters for thin sea ice classification, as it leads to superior accuracy. The reasons
why the sea ice classification results for the hybrid-pol parameters outperform those of the
quad-pol parameters need further study.
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