
o Overall, stacking with quantile regression and stacking with quantile

regression neural networks are the best algorithms for the problem of

interest.

o Still, the relative performance of the algorithms (ensemble learners

and individual machine learning algorithms) should be expected to

depend on the technical problem.

o Therefore, large-scale comparisons of the same algorithms in other

technical problems would also be useful.

We present the first ensemble learning methods for quantifying

predictive uncertainty in satellite precipitation data correction, as well as

the large-scale comparison of these methods. Ensemble learning was

performed by combining in multiple ways a variety of machine learning

algorithms that are particularly suited for the task of interest. Monthly

precipitation data from across the contiguous United States supported

the comparison, which predominantly relied on skill scores and referred

to the ability of the ensemble learning methods in delivering predictive

quantiles at many levels. The results allow the ordering from the best to

the worst of the ensemble learning methods.

This poster is based on Papacharalampous et al. (2024b).

A review on predictive uncertainty estimation with machine learning can

be found in Tyralis and Papacharalampous (2024).
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 Total monthly precipitation data from:

 The Global Historical Climatology Network monthly database,

version 2 (GHCNm; Peterson and Vose 1997).

 Daily precipitation data of the current operational PERSIANN

(Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks) system (Hsu et al. 1997, Nguyen et al.

2018, 2019).

 Daily precipitation data of the GPM IMERG (Integrated Multi-satellitE

Retrievals) late Precipitation L3 1 day 0.1 degree x 0.1 degree V06

dataset (Huffman et al. 2019).

 Elevation data from the Amazon Web Services (AWS) Terrain Tiles

application.

This work was conducted in the context of the research project BETTER

RAIN (BEnefiTTing from machine lEarning algoRithms and concepts for

correcting satellite RAINfall products). This research project was supported

by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the

“3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers”

(Project Number: 7368).

4. Spatial interpolation problem formulation

Ensemble learners (see 3)

Individual machine learning algorithms

• Quantile regression – QR (Koenker and Bassett 1978, Koenker 2005)

• Quantile regression forests – QRF (Meinshausen and Ridgeway 2006) 

• Generalized random forests – GRF (Athey et al. 2019) 

• Gradient boosting machines – GBM (Friedman 2001) 

• Light gradient boosting machines – LightGBM (Ke et al. 2017) 

• Quantile regression neural networks – QRNN (Taylor 2000, Cannon 

2011)

Dependent variable

Gauge-measured precipitation at the location of interest

Predictor variables (see also 4 and 5)

• Distance-based weighted precipitation at the four PERSIANN grid

points that are closest to the location of interest

• Distance-based weighted precipitation at the four IMERG grid points

that are closest to the location of interest

• Elevation at the location of interest

Random division into 3 datasets of equal length

Quantile levels

{0.025, 0.050, 0.075, 0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700,

0.800, 0.900, 0.925, 0.950, 0.975}

Metrics

• Quantile skill score

• Sample coverage

1 421 stations with data in the period 2001–2015

o Satellite data are not accurate but available at a dense spatial grid.

o Gauge-measured data are accurate but available in gauged locations.

o Thus, satellite and gauge-measured data are often merged for forming

gridded precipitation data that are more accurate than the satellite ones.

o Still, uncertainty estimates for the data obtained in this way are sparsely

provided.

o A few studies focus on the use of machine learning algorithms for 

providing such estimates (Bhuiyan et al. 2018, Zhang et al. 2022, 

Glawion et al. 2023, Tyralis et al. 2023, Papacharalampous et al. 2024a).

o This presentation outlines the first ensemble learning methods (Sagi

and Rokach 2018; Wang et al. 2022) formulated for the task.

o Additionally, it presents the large-scale comparison of these methods.

3. Ensemble learners

• Mean combiner

• Median combiner

• Best learner

• Stacking (Wolpert 1992) with QR as the combiner 

• Stacking with QRF as the combiner

• Stacking with GRF as the combiner

• Stacking with GBM as the combiner

• Stacking with LightGBM as the combiner

• Stacking with QRNN as the combiner

6. Results


