
Predictive uncertainty estimates for precipitation data acquired through

merging satellite and ground-based observations are usually not provided.

Here, we present the first benchmark experiments on the use of machine

learning algorithms for fulfilling the task of delivering such estimates. These

experiments compared six machine learning algorithms (i.e., quantile

regression, quantile regression forests, generalized random forests, gradient

boosting machines, light gradient boosting machines and quantile

regression neural networks) and relied on 15-year-long monthly data that

originate from across the contiguous United States. The comparison referred

to the ability of the machine learning algorithms in delivering predictive

quantiles at various levels. The results allow the ordering from the best to

the worst of the machine learning algorithms for the problem of interest.

This poster is based on Papacharalampous et al. (2024).

A review on predictive uncertainty estimation with machine learning can be

found in Tyralis and Papacharalampous (2024).
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 Total monthly precipitation data from:

 The Global Historical Climatology Network monthly database,

version 2 (GHCNm; Peterson and Vose 1997).

 Daily precipitation data of the current operational PERSIANN

(Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks) system (Hsu et al. 1997, Nguyen et al.
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 Daily precipitation data of the GPM IMERG (Integrated Multi-satellitE
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dataset (Huffman et al. 2019).

 Elevation data from the Amazon Web Services (AWS) Terrain Tiles

application.
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Quantile prediction skill

Machine learning algorithms

• Quantile regression (Koenker and Bassett 1978, Koenker 2005)

• Quantile regression forests (Meinshausen and Ridgeway 2006) 

• Generalized random forests (Athey et al. 2019) 

• Gradient boosting machines (Friedman 2001) 

• Light gradient boosting machines (Ke et al. 2017) 

• Quantile regression neural networks (Taylor 2000, Cannon 2011)

Dependent variable

Gauge-measured precipitation at the location of interest

Predictor variables

• Precipitation at the four PERSIANN grid points that are closest to the

location of interest

• Precipitation at the four IMERG grid points that are closest to the

location of interest

• Distances between the location of interest and each of its closets

PERSIANN grid points

• Distances between the location of interest and each of its closets

IMERG grid points

• Elevation at the location of interest

Five-fold cross-validation

Quantile levels

{0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975}

Metrics

• Sample coverage

• Quantile prediction skill

• Quantile scoring rule skill

1 421 stations with data in the period 2001–2015

o Gridded precipitation data are often formed by merging satellite and

gauge-measured data.

o However, uncertainty estimates for the precipitation data acquired in

this manner are rarely provided.

o A few studies focus on how to provide such estimates by using machine 

learning algorithms (Bhuiyan et al. 2018, Zhang et al. 2022, Glawion et 

al. 2023, Tyralis et al. 2023).

o Still, the benefits that machine learning can bring to the task of interest

have not been explored so far through benchmark tests.

o The work summarized by this presentation has filled in this gap.

o Light gradient boosting machines have the best performance.

o The remaining algorithms can be ordered from the best to the worst as

follows: quantile regression forests, generalized random forests, gradient

boosting machines, quantile regression neural networks and quantile

regression.

Quantile scoring rule skill


