BG4.1 - Vegetated coastal ecosystems: Bridging disciplines to understand Blue carbon dynamics under global change EGU24-2741

Functional organic matter components in mangrove soils revealed by density fractionation

Morimaru Kida¹*, Kota Hamada¹, Toshiyuki Ohtsuka², Nobuhide Fujitake¹, Toshihiro Miyajima³, Yusuke

Yokoyama^{3,4,5,6,7}, Yosuke Miyairi³

¹ Graduate School of Agricultural Science, Kobe University, Japan

² River Basin Research Center, Gifu University, Japan

- ³ Atmosphere and Ocean Research Institute, The University of Tokyo, Japan
- $^4\,{\rm Graduate}$ School of Science, The University of Tokyo, Japan
- ⁵ Graduate Program on Environmental Sciences, The University of Tokyo, Japan
- ⁶ Japan Agency for Marine-Earth Science and Technology, Japan

 $^7\,\mathrm{Research}$ School of Physics, The Australian National University, Australia

Mangroves are known for their high SOC stocks/area

LETTERS PUBLISHED ONLINE: 3 APRIL 2011 | DOI: 10.1038/NGE01123

Mangroves among the most carbon-rich forests in the tropics

Daniel C. Donato¹*, J. Boone Kauffman², Daniel Murdiyarso³, Sofyan Kurnianto³, Melanie Stidham⁴ and Markku Kanninen⁵

Globally, about 75% of its ecosystem C is stored as SOC

Reasons behind the long-term SOC stabilization are not clear

Estimated fluxes vary more than an order of magnitude These differences can be partly explained by differences in SOC stabilization mechanisms among sites

At least, we must consider two different types of soils

Density fractionation to reveal functional components of SOC

Quantification of SOC fractions with different stability/biodegradability

modified from Rowley et al. (2021)

Fukido mangrove, Ishigaki Isl. Japan

Samples collected from a permanent quadrat in a matured mangrove forest

Three cores were sampled down to 1 m, and sectioned into 10-cm intervals

After air-drying and 2-mm sieved, samples were analyzed by density fractionation after optimization of m-LF recovery

Optimization of m-LF recovery

Energy of 120 J mL⁻¹ or mechanical shaking with beads of 24 hours is sufficient to achieve maximum m-LF recovery The beads method was used this time

HF accounts for 40-60% of SOC, but m-LF is also relatively abundant

Dashed line indicates the average of terrestrial soils (n = 1222, Heckman et al. 2022).

Point ·· 2nd ·· 3rd ·· 5th

-27

-27

Elevated $\delta^{13}C \& C/N$ with depth

Increase downward?

Increased contribution downward	C/N ratio	δ ¹³ C	
Roots	\checkmark	\checkmark	
Lignin	\checkmark	×	
Microbes	×	variable	
Marine	×	\checkmark	
Increased contribution upward	C/N ratio	δ ¹³ C	
Suess effect	variable	\checkmark	
*fossil-fuel derived CO ₂ depleted in ¹³ CO ₂			

Only elevated contribution from (fine) roots can solely explain the increase in C/N and δ^{13} C

Increased contribution downward	C/N ratio	δ ¹³ C
Roots	\checkmark	\checkmark
Lignin	\checkmark	×
Microbes	×	variable
Marine	×	\checkmark

C/N ratios of *Bruguiera gymnorrhiza* n = 4 Leaves 31.6 to 42.6 (36.0 ± 4.9) Fine roots 47.9 to 57.6 (52.3 ± 4.3)

Furthermore, decomposed mangrove roots can exhibit a high C/N ratio. For instance, after one-year of decomposition, mangrove leaves decreased in C/N ratio (from 32 to 18) while roots considerably increased it (from 36 to 66) in a mangrove forest on Pohnpei Island (Ono et al., 2015).

The first evidence of the importance of mineral association in mangrove soils

Contribution of old DIC from carbonates incorporated into marine endmember can be ignored based on the low δ^{13} C values in all samples Yet, reasons for the variability in f-LF ages await further studies.

Organically complexed metals may be the strongest predictor of OC concentrations in HF

All reactive metals extracted by sodium dithionite Organically complexed metals extracted by sodium pyrophosphate Crystalline & nanocrystalline (SRO) metals

Fe is more important than Al? What about redox oscillation?

Summary

- Density fractionation was introduced to mangrove soils
- Functional components wrt stabilization was revealed
- Though HF was most abundant, m-LF was also interesting
- The more mineral associated, the older OM was
- OC concentrations in the oldest and most abundant faction (HF) may be determined by coprecipitation with reactive metals (AI & Fe)
- Further studies considering redox oscillation are necessary, particularly for Fe