BG4.1 - Vegetated coastal ecosystems:
Bridging disciplines to understand Blue carbon dynamics under global change
EGU24-2741

-Functional organic matter

components in mangrove

Sollsrevealed by density
fractionation

®Morimaru Kida', Kota Hamada', Toshiyuki Ohtsuka?,
Nobuhide Fujitakel, Toshihiro Miyajima3, Yusuke

Yokoyama34>.6:7 Yosuke Miyairi3

T Graduate School of Agricultural Science, Kobe University, Japan a Open access

2 Rjver Basin Research Center, Gifu University, Japan

Soil Science
Plant Nutrition

3 Atmosphere and Ocean Research Institute, The University of Tokyo, Japan

4 Graduate School of Science, The University of Tokyo, Japan
5 Graduate Program on Environmental Sciences, The University of Tokyo, Japan
6 Japan Agency for Marine-Earth Science and Technology, Japan

7Research School of Physics, The Australian National University, Australia



Mangroves are known for
their nigh SOC stocks/area
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Mangroves among the most carbon-rich forests in
the tropics

Daniel C. Donato'*, J. Boone Kauffman?, Daniel Murdiyarso3, Sofyan Kurnianto®, Melanie Stidham*
and Markku Kanninen®
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Globally, about 75% of its ecosystem C
s stored as SOC
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Reasons benhind the long-term
SOC stabilization are not clear

Carbon budget for Asia-Pacific mangroves
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Estimated fluxes vary more than an order of magnitude
These differences can be partly explained by differences in

SOC stabilization mechanisms among sites
Sharmaetal. (2023)
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At least, we must consider
two different types of solls

Kida et al. (2017); Kida & Fujitake (2020) 4114



Density fractionation to reveal
functional components of SOC
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-Ukido mangrove, Ishigaki Isl.

Japan
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Samples collected from a permanent quadrat in a matured
mangrove forest

Three cores were sampled down to T m, and sectioned into
10-cm intervals

After air-drying and 2-mm sieved, samples were analyzed by
density fractionation after optimization of m-LF recovery
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Optimization of m-LF recovery

sonication Beads
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Energy of 120 J mL™" or mechanical shaking with beads of 24 hours
'S sufficient to achieve maximum m-LF recovery
The beads method was used thistime

Hamada et al.(2024)



HF accounts for 40-6096 of SOC,

but m-LF Is also relatively abundant
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terrestrial soils (n = 1222, Heckman et al. 2022).
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Only elevated contribution from
(fine) roots can solely explain
the increase in C/Nand 6'3C

INncreasead

contribution C/Nratio O13C

downward C/N ratios of Bruguiera gymnorrhiza
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Furthermore, decomposed mangrove roots can exhibit a high C/N ratio. For
instance, after one-year of decomposition, mangrove leaves decreased in
C/Nratio (from 32 to 18) while roots considerably increased it (from 36 to
66) in a mangrove forest on Pohnpeilsland (Ono et al., 2015).

Hamada et al.(2024)



Thefirst evidence of the
importance of mineral association

N Mangrove Solls
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Contribution of old DIC from carbonates incorporated into marine
endmember can be ignored based on the low &°C values in all samples

Yet, reasons for the variability in f-LF ages await further studies.
Hamada et al.(2024)



Organically complexed metals
may be the strongest predictor
of OC concentrations in HF
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-e IS more important than Al”?

What about
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summary

» Density fractionation was introduced to mangrove soils

« Functional components wrt stabilization was revealed

« Though HF was most abundant, m-LF was also interesting

* The more mineral associated, the older OM was

» OC concentrationsin the oldest and most abundant
faction (HF) may be determined by coprecipitation with
reactive metals (Al & Fe)

» Further studies considering redox oscillation are

necessary, particularly for Fe



	スライド 1: Functional organic matter components in mangrove soils revealed by density fractionation
	スライド 2: Mangroves are known for their high SOC stocks/area
	スライド 3: Reasons behind the long-term SOC stabilization are not clear
	スライド 4: At least, we must consider two different types of soils
	スライド 5: Density fractionation to reveal functional components of SOC
	スライド 6: Fukido mangrove, Ishigaki Isl. Japan
	スライド 7: Optimization of m-LF recovery
	スライド 8: HF accounts for 40-60% of SOC, but m-LF is also relatively abundant
	スライド 9: Elevated δ13C & C/N with depth
	スライド 10: Only elevated contribution from (fine) roots can solely explain the increase in C/N and δ13C
	スライド 11: The first evidence of the importance of mineral association in mangrove soils
	スライド 12: Organically complexed metals may be the strongest predictor of OC concentrations in HF
	スライド 13: Fe is more important than Al? What about redox oscillation?
	スライド 14: Summary

