

Study on the 3DVar emission inversion method combined with machine learning in CMAQ

Reporter: Congwu Huang

Congwu Huang, Tijian Wang, Tao Niu

Hubei University Nanjing University Chinese Academy of Meteorological Sciences

Introduction

•Data and Methods

- •Results
- •Conclusion

Major sources of uncertainty in air quality models

Initial and Boundary conditions

- global distribution
- nested simulation results
- previous simulation results

Emissions

- anthropogenic emissions
- natural emissions

Meteorology

- Clouds
- Wind, temperature, humidity, pressure
- Planetary boundary layer height, local circulations

Processes

- chemistry
- dry deposition

Constantinescu et al., 2007a,2007b; Bocquet et al., 2015

Emission inversion

- 4DVAR and EnKF are two main methods that usually used to adjust emissions.
- Nudging is a relatively simpler method in emission data assimilation, but it can not deal with nonlinear problem or lack of observation

Figure 5. (a) Same as Fig. 1a except for the MOP CPSR experiment and the middle panel from Fig. 1a, the MET DA experiment is not plotted. (b) Same as Fig. 1b except for the MOP CPSR experiment.

experiment (white) in nearly all cities

Nudging

Cheng et al. (2008)

Elbern et al,(2007)

4 D V A R

analysed by joint initial value/emission rate optimisation with 24 h assimilation interval placed at 17 August 1997.

Fig. 10. Emission correction factors for (a) sulfur dioxide, (b) nitrogen dioxide, (c) terminal alkenes, and (d) isoprene at the surface layer,

EnKF

Mizzi et al,(2016)

Machine learning

- Machine learning can improve the air quality forecasting accuracy significantly.
- Machine learning can deal with the nonlinear problem.
- In most cases, the effect of machine learning is increased with the growth of database.

Taylor et al., (2002). IEEE Transactions on Power Systems.

Figure 7. RMSE against the station index (for 241 stations). In green, $\mathcal{R}_{1000}^{\vec{\beta}}$; in blue, the best model (over all stations); in black, the best model and the worst model for the station.

Mallet, V. et al., (2009). Journal of Geophysical Research: Atmospheres

Huang. et al.,(2018). Acta Meteorologica Sinca

Introduction

•Data and Methods

- •Results
- •Conclusion

Data and Methods

	a. WRFv3.7.1							
	Simulation period Vertical resolution	3–30 January 2019 33 vertical levels WSM 3-class simple ice scheme YSU scheme		a. CMAQv5.3.2				
	Microphysics scheme			Horizontal advection	Yamo			
	Boundary layer scheme				Vertical advection	WRF		
	Surface layer scheme MM5 scheme Land-surface scheme Unified Noah land-surface model Longwave radiation scheme rrtm scheme		Horizontal diffusion	Multiscale ACM2				
			Vertical diffusion					
WRFv3.7.1			Deposition M3Dry		M3Drv			
	Shortwave radiation scheme	Dudhia scheme		Chemistry solver	EBI			
	Griu-inuging iuua	Oli		Aerosol module	AERO7			
$CM\Delta Ov5 3.2$	Domain center	39.1248°N, 116.5657°E		Cloud module	ACM			
CIVIT QVJ.J.Z	Domain center 39.1248°N, 116.5657°E Aerosof module Domain id 1 2 3	cb6r3_ae7_aq						
	Domain size	64×75	69×81	102×96	Domain id	1	2	3
	Starting IJ-indices from the parent domain	×	(30, 19)	(38, 23)	Domain size	62×73	67×79	100×94
$C_{1}^{2} = 1 + \frac{1}{2} $	Horizontal resolution	81km	27 km	9km				

Simulation period: 2 to 30 January in 2019 —^{Horizontal re} Resolution: 81km*81km, 27km*27km, 9km*9km Pollutants: PM_{2.5}, O₃

Observation: $PM_{2.5}$, O_3 and NO_2 from 255 air quality stations in BTH region Emission inventory: MEIC 2017

3DVar data assimilation method for initial conditions

$$J(x) = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2}(Hx - y)^T R^{-1}(Hx - y)(1)$$

$$\downarrow$$

$$J(\delta x) = \frac{1}{2}(\delta x)^T B^{-1}(\delta x) + \frac{1}{2}(H\delta x - d)^T R^{-1}(H\delta x - d) (2)$$
innovation $\delta x = x - x_b$

R: The given measurement instrument error and representative error obtained through spatial allocation $\varepsilon_R = \gamma \varepsilon_0 \sqrt{\frac{\Delta l}{L}}$

B:NMC (Error between 24 and 48 hour simulations) (2) $B = DCD^{T}$; $C = C_x \otimes C_y \otimes C_z$; $\delta x = DC^{\frac{1}{2}} \delta p$ $J(\delta p) = \frac{1}{2} (\delta p)^T \delta p + \frac{1}{2} (HDC^{\frac{1}{2}} \delta p - d)^T R^{-1} (HDC^{\frac{1}{2}} \delta p - d)$

(3) H: transformation matrix for linear interpolation of the model field to the location of the observation points gradient descent method to solve the minimization process gradient : $\nabla J(\delta x) = B^{-1}(\delta x) + H^T R^{-1}(H\delta x - d)$ (4) $\delta x_{k+1} = \delta x_k + \rho_k s_k$ $s_k = -\nabla J(\delta x_k)$

Extended 3DVar to emission inversion method based on machine learning

From (1):
$$J(e_t) = \frac{1}{2}(e_t - e_{tb})^T B^{-1}(e_t - e_{tb}) + \frac{1}{2}(H_t^e e_t - y_t)^T R^{-1}(H_t^e e_t - y_t)$$
 (3)
 $H_t^e = H_t^e S$: $\delta c_t = H_t^e e_t - H_{tb}^e e_{tb} \approx H_t^{e'}(e_t - e_{tb}) = H_t^{e'} \delta e_t$: $d_t = y_t - H_{tb}^e e_{tb}$
 $J(\delta e_t) = \frac{1}{2}(\delta e_t)^T B^{-1}(\delta e_t) + \frac{1}{2}(H_t^{e'} \delta e_t - d_t)^T R^{-1}(H_t^{e'} \delta e_t - d_t)$ (4)
In order to solving the Minimization of $J(\delta e_t)$, S'^T , the tangent linear adjoint mode of air quality model need to be
 $developed$, We use machine learning to replace S'^T .
 $H_t^{e'T} = S'^T H_t^{o'T} = M_{\delta c_t} H_t^{e''T} R^{-1}(H_t^{e'} \delta e_t - d_t) = B^{-1}(\delta e_t) + M_{\delta c_t} H_t^{p''T} R^{-1}(H_t^{e'} \delta c_t - d_t)$ (5)
Stair quality model : H_t^e : the transformation matrix between the emission intensity and the observation
 $\delta C_A = [\delta e_1 \cdots \delta e_t]$
 $\delta C_A = [\delta e_1 \cdots \delta e_t]$
 $\delta C_A = [\delta e_1 \cdots \delta e_t]$
 δC_A : All the simulated concentration innovation in database
 δE_A : Emission innovation in one-to-one correspondence with δC_A M : machine learning model

Why Extremly Random Trees?

1.The comparison of ExRT and XGBoost in WRFCHEM-MOS in Qingdao

2.The comparison of ExRT、GBRT and Adaboost in CMAQ-MOS in Qingdao

RMSE	SO ₂	NO ₂	PM ₁₀	СО	O ₃	PM _{2.5}
CMAQ	106.23	59.84	137.85	0.36	34.28	105.45
MOS_EXTRA	14.04	19.06	48.06	0.21	44.65	23.00
MOS_GBRT	15.85	19.26	48.85	0.21	44.45	21.58
MOS_ADA	13.91	19.81	50.24	0.21	47.55	23.03

3. The comparison of ExRT and BPNN in CMAQ-MOS in Qingdao

ExRT has been proved to be a stable and efficient method comparing to other methods in our previous studies in improving air quality forecasting accuracy using model output statistics method.

Framework of the 3DVar-ExRT method

- Nudging method was used to create the basic database of simulations and innovations, using simulations of CMAQ and the ground-based observations.
- These data are employed to train a machine learning model using extremely random trees method (ExRT), and to store the relations between innovation vector and simulations in the trees.

- Using Nudging method to calculate the hourly emission innovation vector from 2 to 14 January, 2019 and create the database of observation, simulation and innovation vector. The model restart every 24 hours and store the data of observation, simulation and innovation vector in the database.
- Using Nudging (Nud) and 3DVar-ExRT (3DEx) method to adjust anthropogenic emissions of PM2.5, VOCs and NO_x from 15 to 30 January,2019.
- Every 24 hours, all the simulation of PM_{2.5}, O₃ and NO₂ and innovation vector of PM_{2.5}, VOC and NO_x data in the database was used to train the PM_{2.5} and VOCs machine learning model.
- We use the machine learning model and 72h observation before model restart to get the 3DEx innovation vector for the next day.

Notice:NO₂ observations and simulation was used to calculate the emission of NO_x
 O₃ observations and simulation was used to calculate the emission of VOCs in Nud
 O₃ and NO₂ observations and simulation was used to calculate the emission of VOCs in 3DEx

Contents

- Introduction
- •Data and Methods
- •Results
- •Conclusion

Daily change of $PM_{2.5}$, VOC and NO_x emission inventories

 NO_2 simulations, observations and NO_x emission inventories was used in the ExRT model to calculate the 3DEx innovation vector of NO_x .

 O_3 and NO_2 simulations, observations and VOC emission inventories was used in the ExRT model to calculate the 3DEx innovation vector of VOCs.

Nud method can only consider direct reaction between O3 and VOCs 3DEx can consider all direct and indirect reactions into the nonlinear ExRT model

Hours

The emission changes before and after emission inversion

Simulation time: 2019.1.15 to 2019.1.30

- MEIC has time lag and cannot reflect the current emissions.
 - There has been improvement in the inversion, with a significant decrease in PM2.5 and a significant increase in VOCs.

The 2019 emission inventory= original emission inventory (MEIC 2017)+emission innovation(inversed by using the 2019 observations)

Results of emission inversion

The Nudging method cannot handle nonlinear problems, attributing all O_3 errors to the underestimation of VOCs, and the inversion of O_3 actually deteriorates.

3DEx: O_3 -NO_x-VOCs nonlinear processes $\approx O_3$,NO₂ concentration innovation+VOCs,NO_x emission innovation+ExRT model

 $\delta E_{NOx} = M(\delta C_{O3}, \delta C_{NO2})$ $\delta E_{VOCs} = M(\delta C_{O3}, \delta C_{NO2}, \delta E_{NOx})$

3DEx can significantly improve the simulation of O_3 .

Assessment of the 3DEx emission inversion method

As for $PM_{2.5}$, Nud can significantly improve the forecasting accuracy and 3DEx was better.

As for O_3 , Nud reckon without nonlinear reactions of O3-Nox-VOC made the forecasting worse. But 3DEx can partly take the place of the nonlinear reactions and had a better performance.

		PM _{2.5}			03	
	NODA	Nud	3DEx	NODA	Nud	3DEx
Rs	0.47	0.54	<u>0.54</u>	<u>0.33</u>	0.16	0.32
RMSEs (µg/m ³)	56.44	38.23	<u>33.82</u>	24.60	36.61	<u>17.58</u>
Ra	0.85	0.91	<u>0.93</u>	0.75	0.81	<u>0.81</u>
<i>RMSEa</i> _(µg/m³)	24.41	<u>10.59</u>	12.45	13.91	14.86	<u>12.49</u>

• 3DEx-NODA PM_{2.5}: **RMSEs 40% RMSEa 49%**

O₃: **RMSEs 29% RMSEa 10%**

 \overline{Rs} : the hourly averaged spatial correlation coefficient \overline{RMSEs} : the hourly averaged spatial root mean squared errorRa: the correlation coefficient of the site averaged concentrationRMSEa: the root mean squared error of the site averaged concentration

Contents

Introduction

- •Data and Methods
- •Results

•Conclusion

Conclusion

- This efficiently and extensibility framework of 3DVar-ExRT method has been proved to be a good way to adjust anthropogenic emissions.
- 3DVar-ExRT method can improve the $PM_{2.5}$ and O_3 forecasting accuracy and the optimization was better with the growth of database.
- The iterations can be done with the operational forecast, which means the computing resources can be greatly reduced using this method.
- Both linear and nonlinear emission sources can be optimized using 3DVar-ExRT methods.

Thank You!

Email: congwuhuang@hubu.edu.cn

WeChat