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@ﬂ Major sources of uncertainty in air quality models

Initial and Boundary conditions
» global distribution

* nested simulation results

e previous simulation results

Emissions
 anthropogenic emissions
e natural emissions

Meteorology : l..

* Clouds .

* Wind, temperature, humidity, pressure | . =

* Planetary boundary layer height, local circulations : Ny = i
PrOCesseS 5 20 25 30 :leul--n-d.mm

° Chemistry Constantinescu et al., 2007a,2007b; Bocquet et al., 2015

e dry deposition



#i) Emission inversion

* 4ADVAR and EnKF are two main methods that usually used to adjust emissions.

* Nudging is a relatively simpler method in emission data assimilation, but it can not deal with
nonlinear problem or lack of observation
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Fig. 10. Emission carrection factors for (a) sulfur dioxide, (b) nitrogen dioxide, (¢} terminal alkenes, and (d) isoprene at the surfice layer,
analysed by joint initial value/emission rate optinusation with 24 h assimilation interval placed at 17 August 19597,

4DVAR

Elbern et al,(2007)
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Figure 5. (a) Same as Fig. la except for the MOP CPSR experiment and the middle panel from Fig. 1a, the MET DA experiment is not
plotted. (b) Same as Fig. 1b except for the MOP CPSR experiment.

EnKF
Mizzi et al,(2016)
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@i Machine learning

<
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® Machine learning can improve the air quality forecasting accuracy significantly.
® Machine learning can deal with the nonlinear problem.

® [n most cases, the effect of machine learning is increased with the growth of database.
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Data and Methods

a. WRFv3.7.1

WRFv3.7.1
CMAQV5.3.2

Simulation period
Vertical resolution
Microphysics scheme
Boundary layer scheme
Surface layer scheme
Land-surface scheme
Longwave radiation scheme
Shortwave radiation scheme
Grid-nudging fdda

Domain center

3-30 January 2019
33 vertical levels
WSM 3-class simple ice scheme
YSU scheme
MM5 scheme

Unified Noah land-surface model

rrtm scheme
Dudhia scheme
on

39.1248°N, 116.5657°E

a. CMAQv5.3.2

Horizontal advection
Vertical advection
Horizontal diffusion
Vertical diffusion
Deposition
Chemistry solver
Aerosol module
Cloud module

Yamo
WRF

Multiscale

ACM2
M3Dry
EBI
AERO7
ACM

Simulation period: 2 to 30 January in 2019

Resolution: 81km*81km, 27km*27km, 9km*9km

Pollutants: PM, ¢, O,

Observation: PM, :,0,5 and NO, from 255 air
quality stations in BTH region

Emission inventory: MEIC 2017

Domain id 1 2 3 Mechanism ch6r3_ae7_aq
Domain size 64x75 69x81 102x96 Domain id 1 2
Starting 1J-indices from the “ (30, 19) (38, 23) Domain size 62x73 67x79 100x94
parent domain
Horizontal resolution 81km 27 km 9km

(a) (b)
Domains Domain 3 and location of stations
Topography height Topography height meters MSL
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3DVar data assimilation method for
Initial conditions

JO0) =3 (x = x%,)"B™1(x = x5) +3 (Hx — y)"R™ (Hx = y)(1)

!

J(6x) = 2(8x)TB7(8x) + 5 (H8x —
Innovation &x=

d)TR 1 (H6x — d) (2)

X — Xp

R: The given measurement instrument error and representative error

<Observati0n< ( WRF < ( Emission < —

v v
®Observation error CMAQ
covariance matrix
Background
concentration

Background error
covariance matrix

4

Y
Transformation matrix

of observation and
background concentration

obtained through spatial allocation Al
@ €r = Yo T
B:NMC ( Error between 24 and 48 hour simulations)
1
@ B =DCD"; C=C,Q®C,QC,;: &x = DCz8p
1 1 1 T (S N
J(6p) = > (6p)Tép + > (HDCE(Sp — d) R71 (HDCE(Sp — d)

H: transformation matrix for linear interpolation

®

>v

@ 3DVar data
assimilation for
initial condition

of the model field to the location of the observation points
gradient descent method to solve the minimization process

gradient : VJ(6x) = B 1(6x) + H'R Y(H6x — d) :
@ 0Xpt1 = OXp + PiSk °
sk = —V](6x) i

Optimal analysis
field for 1nitial
condition




Extended 3DVar to emission inversion method based on machine learning

1 _ 1 _
From (1): J(es) = E(et — etb)TB 1(9t —ep) + E(Hteet — Yt)TR 1(Hteet —¥:) (3)
Hf = HS; 6&c. = Hie, _Htebetb & Hte,(et — €tp)= Hf,5et; de = yr — Htebetb

J(Sep) = %(6et)TB_1(5et) + % (HE'Se, —d,) R™L(HE Se, —d,) (4
In order to solving the Minimization of J(Se,), S'T, the tangent linear adjoint mode of air quality model need to be
developed,We use machine learning to replace S'7.

HE"™ = STHY" = Mae HE"
V/(Ser) = B~(8e,) + Hf'R™Y(HE'Se, — d;) = B~ (8e,) + Mg, HY'"R™Y(H? 8¢, —d,)  (5)

S:air quality model ;H¢ : the transformation matrix between the emission intensity and the observation
air quality model S

Emission E » Simulated concentration C
Emission innovation §E <= . Concentration innovation 6C -
machine learning model M on innovatl The H' for §x in 3DVar
Initial data assimilation
5C, = [6¢; - &c] OEy = M(6Cy) Changed to
A 1 : S'T means 5C to SE M HTfor Se. in 3DV
5E _ [56 . 68 ] M ~ SIT 5Ct t or et N ar
A ! ‘ - - emission inversion combined
Hf " ~ Msc HY with machine learning.
6C4: All the simulated concentration innovation in database ‘ e L J

6E4: Emission innovation in one-to-one correspondence With 6C4 M. machine learning model



B Why Extremly Random Trees?

Feature Selection

( Database of ( (Database 0fNudging< syt s i 2.The comparison of EXRT. GBRT and Adaboost in

simulations emission innovation
L T

CMAQ-MOS in Qingdao

¥
Feature sorting

RMSE SOZ N02 PMlo CO 03 PMZ.S

CMAQ 106.23 59.84 13785 0.36 34.28 105.45
MOS_EXTRA 14.04 19.06 48.06 0.21 4465  23.00
MOS_GBRT 1585 19.26  48.85 0.21 4445  21.58

MOS ADA 1391 19.81 50.24 0.21 47.55  23.03

and selection
Modeling of extremely

training
samples

randonuzed trees
Sample Sample Sample Sample
subset 1 subset 2 subsetl subset k

shinandong surface 03 (ug/m3)

shinandong surface pm2_5 (ug/m3)

Regressmn Regressmn Regressmn Regressmn
tree 1 tree 2 tree 1 tree k
Prediction v
ExRT model '-< Observations ( _____________________
; i — ) 3.The comparison of EXRT and BPNN in CMAQ-MOS in Qingdao
/ ~Nudging emission / 1.The comparison of EXRT and
innovation (predition) XGBoost in WRFCHEM-MOS in
Qingdao

EXRT has been proved to be a stable and efficient method comparing to other methods in our previous
studies in improving air quality forecasting accuracy using model output statistics method.



( WRF-CMAQ )

v Simulations
usingNud see e
Simulations Observations emissions
xtremely random
v

Uitz WRF-CMAQ
€mission

inventories

trees model

A 4

3DVar
concentration
innovation
vector

Appling

[ Nudging (ExRT)
» emission

|

inventories

emissions

.. Simulations
3DEX emission (( using 3DEx

A

|

Nud emission -

innovation vector . . 2 3DVar-ExRT Orl‘gn‘lal

Inventories Rl emission innovation EETISSTOI

{ ‘ ‘ vector ‘ inventories
Database of observations
| I | Y
( i Database of simulations {
|

Database of innovation vector

» Nudging method was used to create the basic database of simulations and innovations, using simulations of

CMAQ and the ground-based observations.
» These data are employed to train a machine learning model using extremely random trees method (EXRT),

and to store the relations between innovation vector and simulations in the trees.



The emission data assimilation in operational forecast of CMAQ

® Using Nudging method to calculate the hourly emission innovation vector from 2 to 14 January, 2019 and
create the database of observation, simulation and innovation vector . The model restart every 24 hours and
store the data of observation, simulation and innovation vector in the database.

® Using Nudging (Nud) and 3DVar-ExXRT (3DEx) method to adjust anthropogenic emissions of PM2.5, VOCs
and NO, from 15 to 30 January,20109.

® Every 24 hours, all the simulation of PM, ¢, O, and NO, and innovation vector of PM, ., VOC and NO, data in
the database was used to train the PM, - and VOCs machine learning model.

® \\e use the machine learning model and 72h observation before model restart to get the 3DEX innovation
vector for the next day.

® Notice:NO, observations and simulation was used to calculate the emission of NO,
O, observations and simulation was used to calculate the emission of VOCs in Nud
O, and NO, observations and simulation was used to calculate the emission of VOCs in 3DEx



B Contents

 Introduction

e Data and Methods

*Results

e Conclusion



ﬂﬁ Daily change of PM, , VOC and NO, emission inventories

NO, simulations, observations and NO, Simulation Daily Change of PM, 5, O, using Original, Nud and
emission inventories was used in the NudEx em!?ﬁ!ﬂﬂ JﬂM&ﬂE&[‘es N
Nud 704 === Observation Nud

ExRT model to calculate the 3DEXx — o — e —
innovation vector of NO,.

O, and NO, simulations, observations and
VOC emission inventories was used in the
EXRT model to calculate the 3DEX
innovation vector of VOCs.

PMys (g/m’)
03 (ugm’)

204

O 1 2 03 A4 5 6 7 8 9 40 1L 12 13 44 15 16 1T 18 19 20 20 12 2
Hours

Nud method can only consider direct Emission Daily Change of PM, ., VOCs emission inventories in
reaction between O3 and VOCs Oriainal. Nud and NudFx similations N

Hours

- . . . (a) Emission daily change of PM; 5
3DEX can consider all direct and indirect 305 e
. ) . " [\ 13 Nud ﬁl oy A IDEX
reactions into the nonlinear EXRT model \ . f

/sy

NO, + hv + 0, — 05 + NO

NO + 05 — NO + 0,

RH + OH + O, — RO, + H,0

HO, + NO — OH + NO,

RO, + NO + 0, - @-HO, + @+ R'CHO + @+ NO, + (1 — @) - RONO,

03 + hv +H,0—2-0H + 0,

O3 + OLE — products

03 + OH - HO, + 0,

03 + HO2 » OH + 2. 0; .
0 NO, + OH — HNO, N N R R R R R TR T A S S S S S R

PM25 (g/s)

YVOs (moles
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Nud-NODA

3DEx-NODA :

3DEx-Nud

@& The emission changes before and after emission inversion

Simulation time:
2019.1.151t0 2019.1.30

® MEIC has time lag and
cannot reflect the current
emissions.

® There has been
Improvement in the
Inversion, with a
significant decrease in
PM2.5 and a significant
increase in VOCs.

The 2019 emission inventory= original emission inventory (MEIC 2017)+emission innovation(inversed by using the 2019 observations)



Bl Results of emission inversion
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The Nudging method cannot
handle nonlinear problems,
attributing all O5 errors to the
underestimation of VOCs, and the
inversion of O, actually
deteriorates.

3DEXx: 0O5-NO,-VOCs nonlinear
processes= O,,NO, concentration
Innovation+VOCs,NO, emission
Innovation+ExXRT model

0Enox = M(6Cp3,6Cyo2)
8Eyocs = M(6Cp3, 6Cno2, OENox)

3DEX can significantly improve
the simulation of O,.



(a) RMSEs of PMys

Assessment of the 3DEx emission inversion method “ ol -l i oL
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As for PM, ¢, Nud can significantly improve the forecasting 2w 3 (J !
accuracy and 3DEXx was better. L/ b

As for O3, Nud reckon without nonlinear reactions of O3-Nox-
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VOC made the forecasting worse. But 3DEXx can partly take the TS TS
place of the nonlinear reactions and had a better performance. _ ume, -

PM, ¢ O3
NODA  Nud  3DEx | NODA  Nud  3DEx
Rs 0.47 0.54 0.54 0.33 0.16 0.32

RMOES | 644 3823 3382 | 2460 3661 1758
(lg/m?)
Ra 085 091 093 | 075 081 081

RMSE;‘ 24.41 10.59 12.45 13.91 14.86 12.49
(Lg/md) —

® 3DEX-NODA  PM,.: RMSESs 40% RMSEa 49%
0,: RMSEs 29% RMSEa 10% *

Rs:the hourly averaged spatial correlation coefficient
RMSEs:the hourly averaged spatial root mean squared error I I w
Ra: the correlation coefficient of the site averaged concentration ' o A LY N ‘
RMSEa: the root mean squared error of the site averaged concentration

05 (ugm)

B 8 A8 W9 A0 AN D 1D AR 1B 16 T B D
I A e e Y RN N NN
B N NN NSNS

(b) _

n
w
[
>
o
/q/)/
&
®
ZZ'S

o
s
T &
N
yd [ S
3

N
5%2:.1

é
X

l 090

Standardized Deviations (Normalize
(=4
~
o
¥y ]
o, y
A
o
©
Standardized Deviations (Normalized)
(=1 (=
o ~
(=3 (&)
o
-
°
©

o
o
o
v
1 "o
)
o

b=
n
4]
o
w
o
b=
n
4]

e
=)
=1
-
=]

025 050 075 REF 125 150 025 050 075 REF 125 150



B Contents

 Introduction

e Data and Methods

*Results

Conclusion



Conclusion

* This efficiently and extensibility framework of 3DVar-ExXRT method has been
proved to be a good way to adjust anthropogenic emissions.

 3DVar-ExXRT method can improve the PM, ;. and O, forecasting accuracy and
the optimization was better with the growth of database.

* The iterations can be done with the operational forecast, which means the
computing resources can be greatly reduced using this method.

 Both linear and nonlinear emission sources can be optimized using 3DVar-
EXRT methods.



Thank You!

Email: congwuhuang@hubu.edu.cn
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