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ABSTRACT 1 

Climate change and air pollution are two intimately interlinked global concerns. The 2 

frequency, intensity and duration of heatwaves are projected to increase globally under future 3 

climate change. A growing body of evidence indicates that health risks associated with the 4 

joint exposure to heatwaves and air pollution can be greater than that due to individual 5 

factors. However, the co-occurrences of heat and air pollution extremes in China remain less 6 

explored in the observational records. Here we investigate the spatial pattern and temporal 7 

trend of frequency, intensity, and duration of co-occurrences of heat and air pollution 8 

extremes using China’s nationwide observations of hourly PM2.5 and O3, and the ERA5 9 

reanalysis dataset over 2013–2020. We identify a significant increase in the frequency of co-10 

occurrence of wet-bulb temperature (Tw) and O3 exceedances (beyond a certain predefined 11 

threshold), mainly in the Beijing-Tianjin-Hebei (BTH) region (up by 4.7 days decade-1) and 12 

the Yangtze River Delta (YRD). In addition, we find that the increasing rate (compared to the 13 

average levels during the study period) of joint exceedance is larger than the rate of Tw and O3 14 

itself. For example, Tw and O3 co-extremes increased by 7.0% in BTH, higher than the 15 

percentage increase of each at 0.9% and 5.5%, respectively. We identify same amplification 16 

for YRD. This ongoing upward trend in the joint occurrence of heat and O3 extremes should 17 

be recognized as an emerging environmental issue in China, given the potentially larger 18 

compounding impact to public health. 19 

 20 

  21 
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1. Introduction 22 

Global warming and ambient air pollution are two leading global public health concerns, 23 

driven by anthropogenic emissions of greenhouse gases and air pollutants from fossil fuel 24 

uses (Pachauri et al. 2014). It was estimated that the increase in global temperature would 25 

result in additional 250,000 deaths each year between 2030 and 2050 (Watts et al. 2015), 26 

while a recent assessment attributed 4.2 million premature deaths per year to ambient air 27 

pollution exposure (Cohen et al. 2017; WHO 2020). Climate change and air pollution are also 28 

intimately interlinked (Dean; Green 2018). A warming climate could directly alter 29 

meteorological variables, such as temperature, precipitation and wind (Sanderson et al. 2011), 30 

and thus further affects physical and chemical processes of air pollution [e.g., Ozone (O3) and 31 

particulate matter ≤ 2.5μm, (PM2.5)] over multiple spatiotemporal scales (Ebi; McGregor 32 

2008; Kinney 2008; Xu et al. 2018). Climate change is also likely to indirectly change 33 

particulate matter (PM) levels by modulating the natural emission from the occurrences of 34 

wildfires and dust storms (Dean; Green 2018).  35 

Compared to the mean conditions of weather and air pollution, extreme weather and air 36 

pollution events, despite rare occurrences, can pose greater threats to human health and induce 37 

larger devastation to ecosystems and economy (Field et al. 2012; Zhang et al. 2020). More 38 

concerning is that extreme air pollution episodes and heatwaves often occur simultaneously 39 

because they can be driven by some common meteorological conditions. For example, 40 

heatwaves, droughts and peak ozone episodes are usually associated with stagnant high-41 

pressure systems (low precipitation, low wind speeds, sufficient solar radiation, etc.) that tend 42 

to accumulate heat and ozone precursors in a certain location. Moreover, complex interactions 43 

and feedbacks could happen to exacerbate extreme conditions. For example, high temperature 44 

during heatwaves enhances biogenic emissions of volatile organic compounds (BVOCs) to 45 

increase production of O3 and secondary organic aerosols (Karl et al. 2003). Under drought 46 

stress, stomatal uptake by plants is inhibited to reduce water loss, leading to a weaker dry 47 

deposition of O3 and thus its higher surface concentrations (Gerosa et al. 2009; Lin et al. 48 

2020).  49 
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Given that heat waves (Beniston 2004; Meehl and Tebaldi 2004; Stott et al. 2004; Fischer 50 

et al. 2007; Cowan et al. 2014; Schär 2016; Hoegh-Guldberg et al. 2018) and air pollution 51 

episodes (Mickley et al. 2004; Tagaris et al. 2007; Wu et al. 2008; Gao et al. 2013; Rieder et 52 

al. 2015; Schnell et al. 2016; Doherty et al. 2017; Schnell and Prather 2017; Chen et al. 2019) 53 

may aggravate over the coming decades, it is of great significance to analyze the historical 54 

trends of co-occurrence of heatwave and air pollution extremes, which would shed lights on 55 

the fidelity of their future projections. Another imperative to understand the co-occurrence of 56 

heatwave and air pollution extremes is driven by the recognitions that the simultaneous 57 

exposure to both air pollution and heatwave may amplify the health consequences beyond the 58 

sum of individual effects (Basu 2009; Dear et al. 2005; Kan et al. 2012; Li et al. 2014; Ren et 59 

al. 2008; Stafoggia et al. 2008; Wang et al. 2020a; Willers et al. 2016; Zanobetti; Peters 2015).  60 

Over the recent decade, air pollution, particularly the high PM2.5 levels, have raised wide 61 

concerns in China (Gao et al. 2020a; Gao et al. 2020b; Liang et al. 2017), and the State 62 

Council of China announced its strictest plan, the Air Pollution Prevention and Control Plan, 63 

in September 2013 (Zhang et al. 2019) to reduce the level of air pollutants. Since then, a 64 

decreasing trend of PM2.5 levels have been found in both satellite and ground-level 65 

observations (Lin et al. 2018; Wang et al. 2020b; Wang et al. 2021). Despite of the overall 66 

decreasing trend, PM2.5 concentrations during some pollution episodes can still exceed the 67 

threshold recommended by the World Health Organization (WHO) or local standards adopted 68 

in China (Wang et al. 2020b). Notably, while the concentrations of most primary pollutants 69 

have been decreasing in response to the emission control plan, surface O3 concentrations have 70 

been increasing in several populated regions of China (Liu; Wang 2020; Lu et al. 2020; Wang 71 

et al. 2020b), and is projected to increase (Zhu and Liao, 2016). Nevertheless, the variability 72 

and recent trend of the joint frequency of all three detrimental environmental stressors (PM2.5, 73 

O3, and heat extremes) have not been extensively explored in China. Here we present a series 74 

of spatiotemporal analyses based on various sources of observations from 2013 to 2020 75 

(Section 2). The observationally based results here would be crucial to enhancing 76 

environmental protection measures and informing public health policies in the future (Chen et 77 

al. 2018; Xu et al. 2020). 78 
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2. Methods 79 

2.1 Data Sources of PM2.5, O3 and Temperature 80 

Nationwide observations of hourly PM2.5 and O3 concentrations from year 2013 to 2020 81 

were obtained from the China National Environmental Monitoring Center (CNEMC) 82 

network. Starting from 2013 in 74 major cities, the CNEMC network now consists of more 83 

than 1600 monitoring sites, covering 367 cities in China. PM2.5 and O3 were reported in unit 84 

of μg/m3. Daily mean values of PM2.5 were calculated from hourly record. Daily maximum 8-85 

hour average (MDA8) of O3 were calculated as well. Hourly temperature and corresponding 86 

dew point temperature were taken from the ERA5 reanalysis dataset by the European Centre 87 

for Medium‐Range Weather Forecasts (ECMWF) (Hersbach et al. 2020). Both temperature 88 

and dew point temperature from ERA5 were sampled at CNEMC sites to examine co-89 

occurrences.  90 

2.2 Definition of heat extremes using Wet-Bulb Temperature 91 

Previous studies suggested that a combination of temperature and humidity is a better 92 

metric to assess heat-related health risks (Kovats; Hajat 2008; Mora et al. 2017; Xu et al. 93 

2020) , as human body is less able to cool itself efficiently by sweating under high humidity 94 

conditions. We adopted wet-bulb temperature (Tw) in this study as the metric to define 95 

occurrences of heatwaves (Sherwood 2018). The calculation of Tw assumes light wind speed 96 

and moderate radiation (Knutson; Ploshay 2016; Willett; Sherwood 2012), and thus only 97 

accounts for temperature (T) and humidity measures. In this study, we computed Tw using 98 

Stull (2011)’s method: 99 

𝑇𝑇𝑤𝑤 = 𝑇𝑇 ∙ atan �0.151977(100 ∙ 𝑅𝑅𝑅𝑅 + 8.313659)
1
2�+ atan(𝑇𝑇 + 100 ∙ 𝑅𝑅𝑅𝑅)− atan(100 ∙ 𝑅𝑅𝑅𝑅 −100 

1.676331) + 0.00391838(100 ∙ 𝑅𝑅𝑅𝑅)
3
2 ∙ atan(0.023101 ∙ 100 ∙ 𝑅𝑅𝑅𝑅)− 4.686035      (1) 101 

where Tw denotes the wet-bulb temperature (°C), T the temperature (°C), RH the relative 102 

humidity. Because ERA5 provides dew-point temperature only, RH was calculated by the 103 

following equation: 104 

𝑒𝑒𝑠𝑠 = 𝑒𝑒0 ∙ exp�𝐿𝐿𝑣𝑣
𝑅𝑅𝑤𝑤
� 1
𝑇𝑇0
− 1

𝑇𝑇
��, 𝑒𝑒𝑑𝑑𝑑𝑑𝑤𝑤 = 𝑒𝑒0 ∙ exp�𝐿𝐿𝑣𝑣

𝑅𝑅𝑤𝑤
� 1
𝑇𝑇0
− 1

𝑇𝑇𝑑𝑑𝑑𝑑𝑤𝑤
��, 𝑅𝑅𝑅𝑅 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑠𝑠

𝑝𝑝−𝑑𝑑𝑠𝑠
𝑝𝑝−𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤

×105 
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100%,         (2) 106 

where 𝑒𝑒0 represents the reference water vapor pressure (611 Pa), and 𝑒𝑒𝑠𝑠 and 𝑒𝑒𝑑𝑑𝑑𝑑𝑤𝑤 107 

signify the water vapor pressure at saturation and at dew point temperature, respectively. 𝑇𝑇0 108 

refers to the reference temperature (273 K). 𝑇𝑇𝑑𝑑𝑑𝑑𝑤𝑤 denotes the dew point temperature. 𝐿𝐿𝑣𝑣 is 109 

the latent heat of water vaporization from liquid to gas (2.5×106 J/kg), and 𝑅𝑅𝑤𝑤 represents the 110 

specific gas constant for water vapor (461.5 J/kg/K). Following Xu et al. (2020), we adopted 111 

daily average Tw ≥ 25 °C as the threshold for heat extremes. 112 

2.3 Definition of air pollution extremes  113 

We used the air quality standard of China (Zhao et al. 2016) for PM2.5 and O3, namely 75 114 

μg/m3
 and 160 μg/m3, as the cut-off values of exceedance. The days when daily mean Tw, 115 

daily mean PM2.5, or MDA8 value for O3, were higher than corresponding cut-off values, 116 

were marked as exceedance days for each metric. The days when two or more metrics exceed 117 

thresholds simultaneously were further marked as co-occurring extreme days. The numbers of 118 

exceedance days were summarized by months for further trend analyses.  119 

In addition to number of exceedance days (i.e. frequency of extreme events), we also 120 

considered the duration and severity of these extremes (Xu et al. 2020). Duration was defined 121 

as the number of successive days of extreme events. The severity was defined as the 122 

difference between the long-term average and the corresponding levels within the exceedance 123 

days only.  124 

2.4 Statistical Method for Trend Analyses  125 

Previous studies have shown that heatwaves and O3 extremes often occur in warm seasons 126 

while PM2.5 is typically more severe in cold seasons in China (Jia et al. 2017; Lu et al. 2020; 127 

Zheng et al. 2005), we therefore quantify the trend of Tw and O3 during warm seasons only 128 

(six months from April to September), and for PM2.5 we quantified the trend across the entire 129 

year. For the co-occurrence of Tw, O3 and PM2.5, we also used data during warm seasons. We 130 

assess the trends of monthly exceedance frequency (i.e., days per month) for heatwaves, 131 

PM2.5 and O3 from 2013 to 2020, explicitly accounting for seasonal cycles and autocorrelation 132 

(Chandler; Scott 2011; Lu et al. 2020), as detailed below. 133 
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Trend analyses were performed by constructing a generalized linear regression equation 134 

with periodic functions accounting for seasonal variation and an autoregression term 135 

accounting for autocorrelation within the study period, as follows:   136 

𝑦𝑦𝑡𝑡 = 𝑏𝑏 + 𝑘𝑘𝑘𝑘 + 𝛼𝛼 cos �2𝜋𝜋𝜋𝜋
𝐶𝐶
� + 𝛽𝛽 sin �2𝜋𝜋𝜋𝜋

𝐶𝐶
� + 𝐴𝐴𝑅𝑅𝑡𝑡,     (3) 137 

where yt represents the exceedance frequency for the metrics of Tw, PM2.5 and O3 in 138 

month t, t denotes the index of month during the study period of 8 years (ranging from 1 to 48 139 

for Tw and O3, or 1 to 96 for PM2.5 alone), b denotes the intercept, k is the linear trend 140 

coefficient, α and β are coefficients of periodic functions, M is the month index in each year 141 

(ranging from 1 to 6 for Tw and O3, or 1 to 12 for PM2.5 alone), C is the length of seasonal 142 

cycle (6 for Tw and O3, or 12 for PM2.5 itself) and ARt is the autoregression term for yt. Non-143 

parametric Mann-Kendall (M-K) test was performed to test the significance of linear trends.  144 

2.5 Pooling to derive Regional Trend  145 

Previous studies showed that the spatial distribution of O3 concentrations vary greatly 146 

across different regions in China (Lu et al. 2018). Beijing-Tianjin-Hebei (BTH) region, 147 

Yangtze River Delta (YRD) and Pearl River Delta (PRD) region are three major urban 148 

clusters with distinct pollution patterns (Liu et al. 2018; Ma et al. 2019). In this study, we 149 

calculated the aggregated/pooled trend of exceedances for Tw, O3 and PM2.5 as well as their 150 

joint occurrences in these three megacity clusters in China (BTH, YRD and PRD). 151 

However, the methods to generate regional trend in previous studies using observation 152 

data from monitoring sites seem arbitrary as each monitoring site may have depicted different 153 

and even opposite trends. A synthetical statistical algorithm is thus needed to standardize the 154 

calculation of regional trend. Here we propose a pooling method to aggregate the trends 155 

calculated from all individual sites within a specific region. The site-specific local trend, 156 

notated as ki in Section 2.4, are then pooled to estimate the average trend (Kr) representing a 157 

specific region following the equation of: 158 

𝐾𝐾𝑟𝑟 = ∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∙𝑤𝑤𝑖𝑖
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 ,    (4) 159 

where n is the number of sites within the region, and wi is the weighting factor for each 160 

site i, defined as follow, similar to meta-analysis (Lipsey; Wilson 2001), where the standard 161 
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error SEi represents the uncertainty of estimating ki 162 

𝑤𝑤𝑖𝑖 = 1 𝑆𝑆𝑆𝑆𝑖𝑖2⁄ ,     (5) 163 

Kr is approximately normally distributed (Sánchez-Meca; Marín-Martínez 2010) and its 164 

sample variance could be defined as: 165 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑟𝑟) = 1 ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1⁄ ,   (6) 166 

3. Results and Discussion 167 

3.1 Spatiotemporal variations and long-term trend of Tw, O3 and PM2.5 exceedances 168 

Humidity has critical effects on human body’s reaction to temperature (Liu et al. 2014) as 169 

human body is not able to cool itself by sweating under high humidity. Using temperature 170 

only may underestimate the severity of heatwaves, especially in humid regions (Russo et al. 171 

2017). In this study, we adopted 25 °C as the threshold of heat extremes as proposed by Mora 172 

et al. (2017), and note that 25 °C at a typical RH of 40% is very close to daily max 173 

temperature of 35 °C (Xu et al. 2020). Over the southeastern coastal regions, Tw exceedance 174 

days could reach as high as 150–180 days annually (Figure 1a and S1), suggesting high 175 

frequency of heatwaves there. The average Tw in China displays a slightly increasing trend, 176 

rising from 13.5 °C (standard deviation, SD: 5.6 °C) in 2013 to 13.8 °C (SD: 5.5 °C) in 2020 177 

 178 
Fig. 1. Average number of exceedance days per year for Tw (a), O3 (b) and PM2.5 (c); locations of the sites 179 

in the BTH, PRD and YRD regions (d). 180 
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 (Figure S2). Moreover, the severity of high Tw extremes could reach up to 3 °C (Figure S3) 181 

and the events (mean duration) could last about two months in southernmost part of China 182 

(Figure S4). Previously, Ding et al. (2010) and Wei; Chen (2011) reported a significant 183 

increase in heatwaves across the nation during recent decades, except for a slight decrease in 184 

central China. In the shorter period of the last decade as examined here, however, the trend of 185 

Tw exceedance can go in both directions across China (Figure 2). Overall, a clear positive 186 

trend could be found in mid-eastern and northeastern regions, on average, at rates of up to 1.4 187 

days decade-1. In contrast, a decreasing trend, around 1.0 days decade-1 on average, is found in 188 

coastal and central areas of China.  189 

 190 

Fig. 2. Trend of Tw (a,), O3 (b) and PM2.5 (c) exceedance days. Both the angle and color are showing the 191 

negative trends (i.e., downward sloping arrows in blue color) and positive trends (i.e., upward sloping 192 

arrows in red color) 193 

 194 

Occurrences of O3 exceedance were concentrated in the BTH, YRD, and PRD (locations 195 

marked in Figure 1d), where intense human activities are located (Figure 1b). Exceedance 196 

days exhibited a general increase over 2013-2020 (up to 6.0 days decade-1, Figure 2b), in line 197 

with the variations of O3 levels (Figure S5 and S6). Despite that extremely high levels of 198 

MDA8 O3 (i.e., > 30 μg/m3 above the threshold value) were becoming less frequent, the 199 

modest exceedance (approximately 15~30 μg/m3 above the threshold values) was observed in 200 

more sites in recent years (Figure S7). The increase in the mean duration of O3 extremes 201 

(Figure S8) also highlighted the nation-wide spread of O3 pollution, among which BTH area 202 

showed the most significant growth, consistent with previous studies (Li et al. 2017a). The 203 

BTH is severely polluted with respect to PM2.5, and mean exceedance days generally reached 204 

over 60 days (Figure 1c). The number of exceedances of PM2.5 reached a daunting 150 days 205 
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per year in 2013 to 2016 (Figure S9), which improved gradually since 2015 (He et al. 2020; 206 

Wang et al. 2020b; Xue et al. 2020), with both lower PM2.5 levels (Figure S10) and lower 207 

severity observed (Figure S11). PM2.5 exceedance days decreased at the rate of more than 10 208 

days decade-1, with the largest decreasing trend observed in BTH area (Figure 2c). 209 

3.2 Changes in the joint exceedance of Tw, O3 and PM2.5 210 

Figure 3 displays the trends of joint exceedance frequency of Tw, O3 and PM2.5 over the 2013–211 

2020 period. Here, we identify an alarming trend of co-occurrence of Tw and O3 extremes. 212 

High Tw and O3 extremes tend to increase in the study period, especially in the BTH and YRD 213 

regions (at a rate up to 4.0 days decade-1). Among exceedance days, mean duration and 214 

severity of Tw and O3 co-occurrence, we observe similar spatiotemporal pattern, in which the 215 

rising trend of Tw and O3 is larger individually than jointly (absolute changes, Figure S13 and 216 

S14), and most of the upward trend is observed in BTH and YRD regions driven by the co-217 

occurrence in mid-summer (June and July, figures not shown). 218 

 219 

Fig. 3. Trend of co-occurrence of Tw, O3 and PM2.5 exceedance days over China. Co-occurrence of Tw and 220 
O3 (a); co-occurrence of PM2.5 and O3 (b), Tw and PM2.5 (c), Tw, PM2.5 and O3 (d). Both the angle and color 221 
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are showing the negative trends (i.e., downward sloping arrows in blue color) and positive trends (i.e., 222 
upward sloping arrows in red color) 223 

 224 

The co-occurrence of O3 extremes during heatwaves has long been recognized in 225 

developed countries (Filleul et al. 2006; Lee et al. 2006), and the underlying reason behind the 226 

combination of the two risk factors may partially be their common favorable weather patterns. 227 

For example, atmospheric blocking was reported to enhance the probability of co-occurrences 228 

of O3 and heat extremes (Otero et al. 2021). Under a warming climate, amplified atmospheric 229 

blocking events are likely to lead to more frequent joint occurrences of heat and O3 extremes 230 

(Nabizadeh et al. 2019). During heatwaves, the stagnant condition, controlled by anti-cyclone 231 

with a sinking airflow, may lead to less cloud cover (Pu et al. 2017) and weaker surface winds 232 

(Li et al. 2017b), both of which are favorable for O3 formation (Pyrgou et al. 2018). Besides, 233 

previous review has indicated that high temperatures could play a catalytic role in promoting 234 

chemical reactions of O3 formation and enhancing natural emissions of O3 precursors; 235 

temperature is also associated with other synoptic patterns such as blocks and stagnation (Lu 236 

et al. 2019; Wang et al. 2017). 237 

In addition, as NOx and VOCs are not only precursors for O3, but also important 238 

precursors for particular matter, anthropogenic emissions of NOx, CO and volatile organic 239 

compounds (VOCs) could also play a role in the observed patterns (Logan 1985; Lu et al. 240 

2018; Qu et al. 2014), which have indicated that both decreasing NOx and increasing VOCs 241 

levels could enhance O3 pollution. The finding was also replicated by recent studies in China 242 

(Gao et al. 2017; He et al. 2022) and US (Kim et al. 2016). Collectively, these studies 243 

revealed that when controlling the anthropogenic emission of NOx, effective strategies of 244 

VOCs emission control should be also considered in high priority (He et al. 2022). 245 

The co-occurrence of Tw, PM2.5 and O3 exceedance days had been decreasing at majority 246 

of sites, among which the greatest decreasing trend was observed in BTH (Figure 3d). The 247 

trend of duration of these co-extremes also showed a similar pattern (Figure S14). We observe 248 

that although PM2.5 increased at a small number of sites (Figure 2c), the joint occurrence of 249 

PM2.5 and O3 is found to decrease at nearly all sites (Figure 3b). This is possibly associated 250 
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with the fact that elevated PM2.5 levels would reduce O3 levels due to aerosols’ influences on 251 

O3 photochemistry and heterogeneous chemistry (Chen et al. 2020; Li et al. 2019).  252 

In addition to the augmented cases (absolute changes) of co-occurrence of Tw and O3, we 253 

ascertain in this study that the co-occurrence of Tw and O3 have been increasing at higher 254 

percentage rates than the individual pace of each. As shown in Table 1, the exceedance days 255 

of Tw, and O3 increased by 1.0 % decade-1, 8.2 % decade-1, respectively, while the joint 256 

exceedance of Tw and O3 showed an augmented increase by 10.8 % decade-1. Such an 257 

enhancement in the joint occurrences might be due to the abovementioned interaction 258 

between temperature and O3 formation. Additionally, these numbers also indicate that 259 

although the co-occurrence of Tw and O3 extremes was relatively rare in most cities, they have 260 

become more common in the recent years at a disproportionately larger rate.  261 

Table 1. Average trends in percentage per decade (calculated with respect to the mean levels of each metric 262 
over the study period). 263 
 264 

3.3 Regional trend in BTH, YRD and PRD 265 

Among the three regions, BTH showed the highest downward trend (-13.0 days decade-1) in 266 

PM2.5 exceedances, followed by YRD (-7.7 days decade -1) and PRD (-4.6 days decade-1) 267 

(Figure S15). Opposite trends were identified for O3 exceedances, with BTH increasing at 268 

11.4 days decade-1, YRD increasing at 5.5 days decade-1
 and PRD increasing at 1.7 days 269 

decade-1. The exceedance trends of Tw were also positive, despite with a relatively smaller 270 

magnitude (0.9 days decade-1
 for BTH, 3.8 days decade-1

 for YRD and 4.3 days decade-1
 for 271 

PRD) (Figure S15). 272 

Percentage change Exceedance days  Mean duration 
 All BTH YRD  All BTH YRD 
Tw 1.0% 0.9% 0.8%  9.1% -59.4% 4.8% 

O3 8.2% 5.5% 6.6%  142.6% 92.1% 142.5% 

PM2.5 -3.8% -12.0% -10.9%  -28.2% -82.9% -97.1% 

Tw & O3 10.9% 7.0% 7.5%  112.2% 68.9% 139.0% 

Tw & PM2.5 -29.0% -26.5% -33.3%  -174.0% -170.7% 305.4% 

O3 & PM2.5 -28.6% -21.1% -33.9%  -86.0% -183.5% -148.8% 

Tw, O3 & PM2.5 -24.8% -22.2% -28.5%  -127.0% -142.3% -190.3% 
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  273 
Fig. 4. Pooling trends of co-occurrence of Tw, O3 and PM2.5 exceedance days in BTH (a) and YRD (b) 274 
regions. 275 
 276 

Since the co-occurrences of Tw, O3 and PM2.5 were relatively rare in the PRD region, next 277 

we only report results for the BTH and YRD. In the BTH, the co-occurrence of Tw and O3 278 

increased at 4.7 days decade-1 (or relatively at 7.0 %/decade) while all other combinations 279 

exhibited decreasing trends (Figure 4 and Figure 5a,). Similar patterns are found in the YRD 280 

(Figure 4 and Figure 5b). Similarly, increasing trends of Tw and O3 severity and extreme 281 

duration were also identified in these two regions (Figure S16 and Figure S17). In BTH, we 282 

observe also that the exceedance days of Tw and O3 co-extremes increased by 7.0%, higher 283 

than the percentage of each of them (0.9% and 5.5%, respectively, Table 1). Same 284 

amplification is also identified for the YRD.  285 

 286 

Fig. 5. Pooling trend of independent and joint occurrence of Tw, O3 and PM2.5 exceedance days in BTH (a), 287 
YRD (b). 288 
 289 
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3.4 Interpretation of the amplified trends 290 

As there is no census on the definition of heatwaves around the globe. Previous studies 291 

that adopted various definitions of heatwaves have revealed differences of effect estimation 292 

under different definitions (Chen et al. 2015; Kent et al. 2014). Our study found that absolute 293 

changes in the rising trend of Tw and O3 is larger individually than jointly while the 294 

percentage rates showed the opposite pattern. This counterintuitive result may be partially due 295 

to the small number of co-occurrence as we used the mean values of each metrics to derive 296 

the percentage change. In addition, the uncertainty of percentage change might also exist 297 

when using other definitions of heatwave. But our sensitivity analysis (Figure S21 and Figure 298 

S22) revealed that the direction and significance remain robust when using different threshold 299 

values. The amplified trend of Tw and O3 we observed might be associated with multi-factors, 300 

such as urban growth, anthropogenic heat and PM2.5 reduction. In addition, heatwaves trends 301 

were also suggested to be associated with the local hydroclimate (Liao et al. 2018). But we 302 

are unable to consider them in a multi-regression model as we do not have access to these 303 

data other than PM2.5 that can be matched to each specific sites in this study. Another 304 

limitation of this study is that we used the fixed-effect model to obtain the average trend 305 

estimates in specific regions. The fixed-effect model made a assumption that the weight of 306 

trend in each site is simply determined by the corresponding variance residuals (lower 307 

indicating better model performance) of trend regression model. Other factors such as 308 

geographical and meteorological conditions (such as elevation and wind speed) of each site 309 

cannot be considered. 310 

4 Conclusion  311 

In the trend pooling analyses, we used a strategy to assess the overall trend of a particular 312 

region. The results are not sensitive to outliers in the time series of data. We first followed the 313 

trend analyses method proposed and used in previous studies (Chandler; Scott 2011; 314 

Cochrane; Orcutt 1949; Weatherhead et al. 1998), and then we combined the trend within 315 

regions by using a standard error-based weighting method. The results are consistent with 316 

previous studies. For example, contrasting trends of PM2.5 and surface O3 concentrations were 317 

observed among all of the three regions(Wang et al. 2020b). In addition, we also found that 318 
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the severity of ozone pollution (difference between mean concentration and its threshold 319 

value) was also on the rise.  320 

BTH, YRD and PRD are the three major city clusters in China and several studies have 321 

indicated that, in urban areas of these region, ozone formation is mainly VOC-limited or 322 

mixed-limited (Geng et al. 2009; Qu et al. 2014; Shao et al. 2009). For mixed-limited regions, 323 

it has been suggested that both decreasing NOx levels and increasing VOCs levels could 324 

enhance ozone pollution (Lu et al. 2018). Furthermore, dealing with warming temperature and 325 

ozone pollution may have some co-benefits due to the relationship between temperature and 326 

ozone formation as discussed above as well as the fact that tropospheric ozone is a potent 327 

greenhouse gas. Therefore, cooperation in policies regarding warming climate and urban 328 

ozone pollution is warranted and further studies are needed to quantify the effect of emission 329 

control measures on both climate change and air pollution. 330 

We conclude that China has achieved success in mitigating particulate matter pollution, as 331 

reduction in average concentration level, and in the frequency, duration and severity of 332 

exceedance events have been observed. However, the widespread ozone pollution and 333 

warming temperature as well as the less-recognized co-occurrence of these two conditions are 334 

on the rise across the country. These two damaging factors for public health and ecosystems 335 

(Chen et al. 2007; Rossati 2017) should be seen as an emerging alarming issue. Further 336 

investigation on both aspects is needed to develop control strategies that effectively mitigate 337 

the ongoing trend and avoid undesired consequences. 338 

 339 
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Figure S1. Number of Tw exceedance days across China over 2013–2020. 

 
 

 

Figure S2. Average Tw across China over 2013–2020 (°C). 
 
 

 
Figure S3. Tw severity across China over 2013–2020. 

 
 

 



 

 

Figure S4. Mean Tw extremes duration across China over 2013–2020  



 

 

 

Figure S5. Number of O3 exceedance days across China over 2013–2020. 
 
 

 

Figure S6. Average O3 levels across China over 2013–2020. 
 
 
 

 
Figure S7. O3 severity across China over 2013–2020. 

 
 



 

 
Figure S8. Mean O3 extremes duration across China over 2013–2020. 

 
  



 

 

 

Figure S9. Number of PM2.5 exceedance days across China over 2013–2020. 
 

 
Figure S10. Average PM2.5 levels across China over 2013–2020. 

 
 

 
Figure S11. PM2.5 severity across China over 2013–2020. 

 
 



 

 
Figure S12. Mean PM2.5 extremes duration across China over 2013–2020. 



 

Figure S13. Trend of mean duration of Tw (a), O3 (b) and PM2.5 (c) extremes (days decade-1). 
Footnote: Both the angle and color are showing the negative trends (i.e., downward sloping arrows in blue color) and positive trends (i.e., upward sloping 
arrows in red color)



 

 
Figure S14. Trend of mean duration of co-occurrence of Tw, O3 and PM2.5 extremes. Co-occurrence of Tw and 
O3 (a); co-occurrence of PM2.5 and O3 (b), Tw and PM2.5 (c), Tw , PM2.5 and O3 (d). 
Footnote: Both the angle and color are showing the negative trends (i.e., downward sloping arrows in blue 
color) and positive trends (i.e., upward sloping arrows in red color) 

 



 

 
Figure S15. Pooling trend of Tw, O3 and PM2.5 exceedance days in BTH, YRD and PRD regions. 

 
 

 
 

Figure S16. Pooling trend of Tw, O3 and PM2.5 severity in BTH, YRD and PRD regions. 
 



 

 
Figure S17. Pooling trend of Tw, O3 and PM2.5 average durations in BTH, YRD and PRD regions. 

 



 

 
Figure S18. The scatterplot of site and ERA5 temperature (sites with median correlation coefficients) 
 



 

 
Figure S19. The scatterplot of site and ERA5 temperature (sites with max correlation coefficients)



 

Figure S20. Comparison of results yielded from conventional method and our method  
 
 



 

Figure S21. Trend of exceedance days using different threshold values (BTH region). 
 



 

Figure S22. Trend of exceedance days using different threshold values (YRD region). 
 



 

Supplementary Information of Methods: Pooling method of trends 

The statistical analyses in a meta-analysis are guided by a statistical model that must be previously 

assumed. The main task of the statistical model is to establish the properties of the trend from which the 

individual trend estimates have been selected. To accomplish the first purpose in a meta-analysis, that 

is, to calculate an average trend, two statistical models can be assumed: the fixed- and the random-

effects models. We used the fixed- effects models for this study. 

Suppose there are k independent empirical sites and Ti is the trend estimate obtained in the ith stie. In 

the fixed-effects model, it is assumed that all of the effect-size estimates in our case, trend estimates, 

come from a population with a common parametric effect size, θ, and as a consequence the only error 

source is that produced by sampling error, ei. Thus, the model can be formulated as Ti = θ + ei, the 

sampling errors, ei, being normally distributed with mean 0 and sampling variance , ei ∼ N (0, σ𝑖𝑖2). 

Therefore, the effect-size estimates, Ti, are also normally distributed with mean θ and sampling variance 

σ𝑖𝑖2, Ti ∼ N(θ, σ𝑖𝑖2). 

To calculate an average effect size from a set of studies, each effect-size estimate must be weighted by 

its precision. In a fixed-effects model, the uniformly minimum variance unbiased estimator (UMVUE) 

of the average effect size, μ, is that obtained by weighting each effect-size estimate by its inverse 

variance: 

𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = �𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖

𝑘𝑘

𝑖𝑖=1

/�𝑤𝑤𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

where 𝑤𝑤𝑖𝑖 is the optimal weight for the ith study and it is defined as 𝑤𝑤𝑖𝑖 = 1/σ𝑖𝑖2 in fix-effect 

models. 

Then the combined effect-size (trend) μ, is estimated by: 

𝑇𝑇𝐹𝐹𝑈𝑈 = �𝑤𝑤�𝑖𝑖𝑇𝑇𝑖𝑖
𝑘𝑘

𝑖𝑖=1
/�𝑤𝑤�𝑖𝑖

𝑘𝑘

𝑖𝑖=1
 

𝑇𝑇𝐹𝐹𝑈𝑈 is approximately normally distributed and its sampling variance defined as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇𝐹𝐹𝐹𝐹) = 1/�𝑤𝑤�𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 



 

Thus, the confidence interval for the average effect size (trend) can be obtained by: 

𝑇𝑇𝐹𝐹𝑈𝑈 ± 𝑍𝑍𝛼𝛼/2�𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇𝐹𝐹𝑈𝑈) 

where 𝑍𝑍𝛼𝛼/2  is the 100*(α/2) percentile of the standard normal distribution and α is a 

significance level. We used α=0.05 in this study, the 𝑍𝑍𝛼𝛼/2 is 1.96 to calculate the 95% confidence 

interval.  
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