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The modern state of Israel is located between 29o and 33o north of the Earth’s equator. It is a small 

(about 22,000 km2) subtropical region between the temperate and tropical zones, characterized 

chiefly by semi-arid and arid climates. Such climate causes increased productivity and water-use 

efficiency due to elevated CO2, which tends to increase ground cover, counteracting the effects of 

higher temperatures. As a result of this effect, Israel, while small, exhibits complex soil formations 

with variable physical properties, even within small areas. Despite its comparatively diminutive 

dimensions, Israel has been a focus of human exploitation and settlement since the earliest days of 

human expansion. More than 27,000 recorded sites form a long record of human presence in the 

area, starting around 1.5 Mya, presenting one of the densest national archaeological records in the 

world. While some sites are still clearly visible on the surface, most ancient remains of various ages 

and origins occur in the subsurface layers at depths of 0.5-8 m (usually in multi-layered 

archaeological sites). Hundreds, if not thousands, of new sites are discovered yearly due to 

construction and development activities, and more than 300 salvage excavations are conducted by 

the Israel Antiquities Authority yearly. Traditional archaeological survey methods are based on 

covering transects of areas by foot and, while prolific, are by nature highly time-consuming and 

costly. Moreover, they usually do not supply information on the extent and character of sub-surface 

remains. Different attempts have been made over the years to apply surface geophysical methods 

(e.g., GPR, ERT, magnetic, paleomagnetic, subsurface seismics, self-potential, thermal, VLF, 

induced polarization, piezoelectric, and microgravity) for the identification of archaeological 

remains as rapid, effective, and noninvasive alternatives for ‘traditional’ archaeological survey 

methods. However, these attempts have not always been successful, mainly because of the 

environmental variability and complex physical-archaeological conditions. Remote Sensing (RS) is 

a low-expensive tool used for detecting and monitoring the physical attributes of objects of interest 

on or below the Earth’s surface from a considerable distance. RS has been proven instrumental in 



 
 

 

archaeological investigations and in comprehending historical contexts on a large scale. This is 

attributed to RS’s rapid data acquisition, expansive coverage, high resolution, and spectral 

sensitivity to anomalies associated with surface, subsurface, buried, and underwater archaeological 

features. Archaeologists gain aid in enhanced discoveries and comprehension of archaeological 

context by utilizing passive and active sensors on drones, satellites, aircraft, and uncrewed aerial 

vehicles. Active RS (such as radar and LiDAR) offers advantages in detecting buried sites in deserts 

or concealed archaeological landscapes within forested areas compared to passive RS 

(encompassing photography and multi-/hyperspectral techniques). The advanced RS application in 

Israel enabled unmasking unknown archaeological targets in the Wadi Asekt (northern Israel) and 

the Biq’at Sayyarim (southern Israel). Detailed surface geophysical studies (GPR and magnetic) and 

archaeological investigations will be conducted at the following stage in the selected areas. 

Information theory approaches and modern wavelet methodologies will be applied to integrate RS 

data numerically with geophysical (and possibly geochemical) methods. 
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I. Introduction 

All geophysical (archaeological, geological) studies are applied in definite succession in time and 

space. Different geophysical and archaeological means (e.g., geophysical mapping and localization, 

geomorphological studies, geochemical investigations, and excavations) are employed to solve 

different archaeological (environmental) problems. Apparently, the most effortlessly formalized are 

digital geophysical observations. 

The final expected aim of the geophysical (environmental) analysis is the best investigation 

of the studied area by a priori assumed limitations. The effectiveness of the geophysical tool 

application is based on three main factors: (1) cost (criterion C), (2) time (Criterion T), and (3) 

informational (criterion). 1st and 2nd criteria may be estimated by simple calculation but 

determining the 3rd criterion is a complex problem. The informational criterion model consists of 

three components (Eppelbaum et al., 2003): (1) quantitative estimation of information, (2) 

estimation of informational reliability, and (3) estimation of informational value according to the 

pragmatic criteria (Figure 1). The paper aims to determine a set of tools that compose the notion of 

“geophysical prospecting” by assuming the reliability of the means. Reliabilities of information 

obtained by separate tools and sets of tools are analyzed in detail. The suggested procedure for 

determining the reliability of tools and sets of tools is based on an improved methodology of 

conditional probability utilization.  

Our aim in this investigation is the estimation of criterion . All available 

geophysical/environmental information can be represented in the classic three-level variant: (a) 

syntactical  volume of information, (b) semantic  substance of information, and (c) pragmatic  

value of information.  

A principal logical-heuristic model of geophysical-environmental information can be 

described in the following form: 

                                    ,VRQ                             (1)                                                                

where Q is the quantitative estimation of information, R is the estimation of informational reliability 

corresponding to the semantic criterion, V is the estimation of informational value by the degree of 

aim achievement according to the pragmatic criterion, and  is the symbol of unification.  

This algorithm is based on the fundamental terms of information theory and combined with 

the structural (hierarchical) approach. This approach enables the construction of each indicator as a 

comprehensive structure reflecting a set of typical situations. After this, the virtual depth of 



 
 

 

searching is estimated and calculated using the developed informational approach. Realizing the 

proposed strategy provides quantitative calculation and effective control of 

geophysical/environmental studies. 

In actual conditions, many random factors disturb the results obtained by geophysical means. 

One essential problem is the impossibility of obtaining a satisfactory formalized description of 

factors influencing the results of local determinations. Similar situations are known in the theory of 

“decision making,” where a complete math formalization of the investigated problem is 

complicated. Our experience (Eppelbaum et al., 2003; Eppelbaum, 2014) suggests that applying 

expert methods in many situations (logical and math-statistical procedures) will be the most 

effective.  

We will consider the reliability of multi-indicator prospecting at the level of local 

determination and examine the reliability of information obtained by a separate means or set of 

means. The main aim of the paper is the problem of determining a set of means composing the 

notion of “geoinformation prospecting” (relative to some fixed feature) by assumed reliabilities of 

the means (in contrast to (Eppelbaum, 2014, 2020) where mainly statistical criteria were analyzed). 

Solving this problem will allow us to find the most optimal combinations of investigation means in 

different physical-geological conditions. 

The determination of the reliability of separate means, broadly speaking, may be obtained 

by the results of control observations or by expert methods.   



Figure 1. Common scheme of geo-information (modified after Eppelbaum, 2020) 

 

 

2. Simplified probabilistic estimation of geophysical (environmental) information 

Let us study geophysical observations here, as they are more easily quantitatively formalized.  

The geophysical fields applied in geology (environment, archaeology) usually have maximal and 

minimal intensity within studied areas. The difference between the maximal and minimal intensities 



 
 

 

may be subdivided into some intervals (gradations). Gradations of indicators can also be used to 

obtain information about the types of anomalous target(s) (AT). Physical fields, geochemical 

analyses, environmental features, etc., can be indicators. Let  BAP i  denote the posterior 

probability of finding the i-th gradation of indicator A (e.g., magnetic field intensity) over the 

targets B,  iAP  is the prior probability of finding the same gradation in a survey area. Thus, 

partial information on the presence of the target BAi
I  contained in the recorded Ai gradation takes 

the following form: 
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as the uncertainty in the recording of Ai before the survey was  iAP2log and after the survey – 

 BAP i2log .  

Similarly, 
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Statistically, the probabilities (or, more precisely, relative frequencies) are expressed by the 

following ratios: S is the total number of values, Si is the number of values occupied by the i-th 

interval of the Ai values, Sp is the total number of points reflecting the AT projections to the earth’s 

surface, and Spi is the number of points common for the interval Ai and the AT projections.  

Then:      
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The increment in information contained about the presence of the object 
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each elementary cell of the studied geophysical (archaeological) characteristics are summed up. 

 

3. Information Theory for a Set of Methods: Some Mathematical Background 

Let us consider a more complex case when we try to convolute information from different principal 

geoinformation tools. Let us assume that feature R is any independent characteristic of the 
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archaeological (environmental) target, such as thickness, density, radioactivity, color, weathering, 

etc.; mean S is some investigation procedure providing information about the direct or 

circumstantial geological-geophysical feature (features), such as drilling, geophysical prospecting, 

geological mapping, geochemical analyses, etc. 

Beneath the reliability of tool (mean) S concerning feature R, we will comprehend a 

probability of certainty for hypothesis : the value of feature R equals the value obtained by mean S. 

Symbol  
niiSS

,1  will designate an arbitrary integration of various means (geophysical, 

archaeological, geological, etc.).  

If features’ values are measured on a numerical scale, we will consider this feature 

quantitative; otherwise, we will believe that the feature is qualitative. The main difference between 

quantitative and qualitative means is that numerical scales of quantitative features are ordered, 

while in a typical case, the scale of qualitative parameters has no order.  

Let us S and R are the fixed mean and feature, respectively, and {r1, r2, …, rk} are set of 

values, which may include feature R. We will consider that the result of the local determination of 

feature R by mean S always consists of some alternative ,1, krr  which may differ from the 

actual value of feature R.  

If the continuous scale of feature R has been divided into intervals, then the determination of 

R reduces to finding the concrete interval to which this feature is. In this case, we can consider that 

r1, r2,…, rk are the points belonging to intervals of dividing (for instance, middles of these 

intervals). Obviously, among the values r1, r2,…, rk is always such rt , which belongs to the same 

interval as the real value of feature R. Then the difference between the actual value of feature and 

value rt does not exceed the length of the respective interval, and value rt may be considered as real 

since we propose that dividing of scale for feature R is being with the necessary accuracy 

(Eppelbaum et al., 2023). Further, under the real value of feature R, we will imply the mentioned 

value rt. 

3.1. Problem Statement 

The introduced notion of reliability of mean S relative to feature R is a quantitative measure of the 

frequency of feature R (obtained by using mean S) coinciding with its actual value. A case when 

feature R is determined not by one mean S, but by a set of means  
niiSS

,1  has the following 

peculiarity. Any series of observations (analyses) realized by a set S is defined, obviously, not one 

alternative r, but a set of alternatives ,,...,,
21 n

rrr  that are different ones. In this case, we 



 
 

 

cannot talk about one value of feature R generated by a set S. Then the following question arises 

having a set of obtained values R -  ,,...,,
21 n

rrr  which alternative r needs to be recognized as the 

value of feature R. In other words, which a priori hypotheses from set k (the actual value of R 

equals to ktrt 1, ) may be assumed as the most suitable. The selection of the best hypothesis 

should be realized using some algorithm (rule). Formally, such a rule may be considered as a 

mapping  of a set of possible indications of means  nrrr  ,...,,
21

 to the set of values of 

features 
kttr

,1 : 

              
.,1,...,, 2121
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kttrrrr
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                               (5) 

If we will associate some fixed rule  = (S, R) with each feature R and set of means 

 
niiSS

,1 , then we will consider that S uniquely determines R. Really, a series of local 

observations of feature R defines a set of alternatives ,,...,,
21 n

rrr   and the rule  gives to the set 

one single value  
n

rrr  ,...,,
21

  of the feature R.  

However, finding the formalizability of reliability is a complex mathematical problem, and 

there are no ways (at least comparatively simple ways) for an identical definition of the rule . In a 

typical case, if 1 and 2 are two different rules, their comparison is a complex problem 

(Eppelbaum, 2020).  

The proposed probabilistic approach to defining reliability enables forming some criterion 

for comparing rules and solving simultaneously a problem of selection (criterion) rule. Let us 

suppose that the value of feature R is r1 for definiteness. Results of determination R by mean S may 

differ from r1 because of the determination inaccuracy. A set of possible indications of mean S may 

be described using some probability distribution: 

     ,,...,  , 1112121111

ro

kk

roro rrPPrrPPrrPP                       (6)                             

where  ro
rrPP 11    is the conditional probability of that results of determination is r if the real 

value of feature R is r1 (indexes “o” and “r” designate the “observed” and “real” values, 

respectively). 

Value r2 of feature R corresponds to another set of probabilities: P21, P22, …, P2k. In the 

typical case, probabilities Pt1, Pt2, …, Ptk depend on t (i.e., the actual value of feature R). We will 

consider a matrix of conditional probabilities   
kt

r
t

o
tr rrPP

,1, 


  for each pair (S, R) by 
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introducing expert methods since obtaining it logically is practically impossible: 
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We must note that the matrix depends not only on S and R but also on the concrete physical-

geological (environmental, archaeological, etc.) factors. However, the relationship of  (S, R) from 

different factors is not discussed here since we believe these factors are fixed in natural conditions. 

Obtaining a matrix (S, R) containing k2 numbers may appear to be a practically unsolvable 

problem. However, in natural conditions, the number of independent elements in this matrix is 

usually significantly reduced.  

It was mentioned above that probabilities Pt are conditional ones.  r
t

o
tr rrPP   is the 

conditional probability of observed value r of feature) indicator) R (under the condition that r is 

the actual value of the feature). However, an inverse problem may be of vital importance 

(Eppelbaum, 2020): when using the observed indication of mean, it’s necessary to give a 

probabilistic estimation of real value. Mathematically, this offers solutions to the problem of 

determining probabilities   
kt

o
t

r
t rrPP

,1,

~




 . In contradiction to Pt, indexes “o” and “r” here are 

interchanged.  

Probabilities
τtP

~
 are not associated with tP  a challenging analytical relationship. However, 

if a priori probabilities  trP of alternative R values are known, then values tP
~

may be expressed by 

tP using well-known Bayes’s expression (e.g., Daston, 1995): 
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If we have no initial information about the values of the feature, we will consider that P(r1) 

= P(r2) = … = P(rk) = 1/k. In this case, Eq. (8) will be simplified: 
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Thus, if for all  is fulfilled, the following equality: 
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then    or
t

r
t

o
rrPrrP   . Equality (10) indicates that a sum of elements of any column of the matrix          

 (S, R) = 1.  

Further, we will suppose that 
k

rPrPrP k
1)(...)()( 21  , i.e. alternatives r1, r2, …, rk 

have a priori the equal probabilities. At the same time, fulfilling equality (10) is not obligatory. 

 

3.2. Reliability of mean S relative to feature R 

From the above-mentioned description of the total probability (Daston, 1995), it follows that the 

reliability of mean S relative to feature R may be calculated using the following expression 
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Eq. (11) has been transformed to the following form: 
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3.3. Reliability of set of means Si relative to feature R 

Let us consider the definition of feature R by a set of means   .
,1 niiSS   The proposed 

methodology is based on realizing the following proposition. 

Let us assume that the sequence of indications of means  
niiSS

,1 (replacing feature R) is 

an independent one. This means that  
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As aforementioned, we need to agree on which R value we will select as the most plausible 

hypothesis about its real value (by each fixed set of indications of means).  

After series of observations of feature R (using a set of means  
niiSS

,1 ), we will receive a 

set of alternatives .,...,,
21

ooo

n
rrr   Which of the following k hypotheses t ( 0

t

r

t
rr  ) could be 

adopted as the most plausible? There must exist a hypothesis for which the respective probability  

          ooor

t n
rrrrP  ...,,

21
                                (14)                                                           

will admit the maximum value. 

We designate that * is mapping (rule) placing in requirement to each sequence of means 

such alternative value rt* of feature R, on which is reaching the maximal value of Eq. (14). We will 

propose that the reliability of a set of means S relative to feature R is the probability of coinciding 

feature R (determined by the rule *) with the actual R value (Eppelbaum et al., 2003).  

Taking into this proposition and the known expression of the total probability, we have   

      .,...,,...,,;,...,,
1

21
21 *,...,,21

oor

t

ooo

n nn n
rrrPrrrPRSSSd                (15) 

Transforming (15) analogously to the conversion of Eq. (11) to Eq. (12), we receive the 

following expression for the calculation of the reliability of set S relative to feature R: 
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The rule * setting up a correspondence between the set of possible indications of means 

 ooo

n
rrr  ,...,,

21
 and set of values of feature {rt}, sets up a simultaneous correspondence between the 

indexes: 

      .*,...,,:* 21 tn                              (17)                                                      

It is supposed that t* in Eq. (16) is defined from a relationship (17) for each fixed 

set  n ,...,, 21 .  

4. Remote Sensing Image Recognition 

4.1. Some Common Background 

Remote Sensing (RS) encompasses all methods used for detecting and monitoring the physical 

attributes of objects of interest on or below the Earth’s surface from considerable distances (Lasapo

nara and Masini, 2012; Luo et al., 2018, 2023; Colombero et al., 2020). RS has been proven 



 
 

 

instrumental in archaeological investigations and in comprehending historical contexts on a large 

scale (e.g., Chen et al., 2017; Fiorucci et al., 2022; Price et al., 2023; Tiwari et al., 2023). This is 

attributed to RS’s rapid data acquisition, expansive coverage, high resolution, and spectral 

sensitivity to anomalies associated with surface, subsurface, buried, and underwater archaeological 

features. Significant discoveries were made using RS applied to archaeological landscapes, 

encompassing paleo-environments, ancient settlements, communities, and anthropogenic 

surroundings (Yang et al., 2022). Utilizing passive and active sensors on drones, satellites, aircraft, 

and unmanned aerial vehicles, archaeologists gain a spatial viewpoint that aids in enhanced 

discoveries and comprehension of archaeological (Birkenfeld and Garfunkel, 2020) context.  

Active RS (such as radar and LiDAR) offers advantages in detecting buried sites in deserts 

or concealed archaeological landscapes within forested areas compared to passive RS 

(encompassing photography and multi-/hyperspectral techniques). Archaeological RS can be 

combined with ground-based geophysical methods (e.g., ground-penetrating radar (GPR), electrical 

resistivity tomography (ERT), magnetics, electromagnetic sensing, and acoustic sensing (e.g., 

multibeam bathymetry and sonar). These geophysical and acoustic methods can complement 

satellite and aerial RS findings. Ground-based geophysical methods like GPR, magnetometry, or 

ERT can then be applied to explore and confirm the presence of subsurface features identified 

through satellite remote sensing. For instance, anomalies detected in satellite imagery indicating 

potential buried structures or features can be confirmed and mapped using GPR or electrical 

resistivity surveys on the ground (e.g., Deroin et al., 2012). Anomalies in satellite images may 

correspond to buried settlements or structures, and magnetometry can verify and map these features. 

This integration enhances the understanding and recording of buried structures or cultural 

landscapes.  

Machine learning techniques can be used to make integrated studies more effective. 

Machine learning (or computer vision methods) has significantly transformed remote sensing data 

analysis by enabling advanced algorithms to process vast quantities of imagery from satellites and 

aerial platforms (Davis, 2019). Recent advancements in semi-supervised and unsupervised machine 

learning techniques extend the exploration of extensive datasets. Convolutional neural networks 

(CNNs) excel in extracting intricate spatial features and facilitating land cover classification, 

semantic segmentation, change detection, and super-resolution imaging (Meyer-Heß et al., 2022). 

Machine learning algorithms enable anomaly detection and enhance understanding of patterns 

typical for archeological sites.  

Pre-processed images can be used to train neural networks and develop models of automatic 
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recognition of archeological objects. Several models must be created for this aim since each neural 

network is trained on a particular class of objects (round-shaped, square-shaped, elongated), 

sometimes allowing us (combined with additional factors) to recognize a specific epoch. Machine 

learning for this aim encompasses supervised and unsupervised learning methods, including 

clustering, regression, and classification. Deep learning, a subset of machine learning, employs 

complex algorithms like CNNs for object detection and image analysis tasks. Unlike traditional 

methods, artificial intelligence-based models can handle large datasets without predefined rules, 

making them valuable for tasks requiring new data predictions. The choice between these 

approaches depends on the specific application and research goals. In our study, we will train neural 

networks to recognize archeological objects of different shapes and epochs.  

Three image processing algorithms most popular in computer vision will be tested, namely, 

Single Shot Detection (SSD), Faster Region-based Convolutional Neural Networks (Faster R-CNN), 

and YOLO - You Only Look Once (Srivastava et al., 2021). SSD employs a single neural network 

to predict object bounds and class probabilities concurrently. It applies convolutional layers to the 

input image and predicts multiple bounding boxes and their associated class probabilities across 

different spatial scales. R-CNN is faster and operates in two stages. First, it employs a region 

proposal network to propose potential bounding box regions, and then a network head processes 

these regions for object classification and bounding box refinement. YOLO employs a single-stage 

approach technique, directly predicting bounding boxes and class probabilities on a grid system 

overlaid on the image. YOLO divides the image into a grid and predicts bounding boxes and their 

corresponding class probabilities within each grid cell. This approach enables faster processing 

since it eliminates the need for regional proposals. SSD and YOLO are considered single-shot 

detectors due to their ability to predict objects in one pass, and Faster R-CNN uses a two-stage 

process involving region proposals and classification. As a result, Faster R-CNN tends to have 

greater accuracy but is relatively slower compared to SSD and YOLO. SSD and YOLO prioritize 

speed, achieving a balance between speed and accuracy. YOLO optimizes speed by directly 

addressing object detection and classification in one step. Faster R-CNN, although slower, often 

delivers higher precision due to its multi-stage approach, allowing for more precise localization and 

classification of objects. 



 
 

 

 
Figure 2. Restoration of the image of the Biq’at Sayyarim site (southmost Israel). (a) general location, (b) 

on-site photo, (c) satellite image taken in 2011, (d) satellite image taken in 2021, (e) enhanced image of the 
site based on 2011, (f) restored image from the combined 2011 and 2021 images (Eppelbaum et al., 2024a, 

2024b).  

 

Choosing the best method for our task requires considering the balance between accuracy, 
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speed, and computational resources in the context of the specific requirements of archaeological 

site identification. Conducting comparative studies or trials with the available methods on the 

target dataset will help us determine which approach best suits the given application. When 

archaeological site identification requires precise localization and classification of small or 

intricate details within the satellite imagery, Faster R-CNN might be more suitable due to its multi-

stage approach. However, preliminary studies show that SSD and YOLO can excel in finding 

larger-scale objects. The process will include (i) collecting a labeled dataset and preprocessing the 

data, splitting it for training, validation, and testing, (ii) choosing a suitable CNN architecture, (iii) 

augmenting the data to improve model robustness, (iv) training the CNN with appropriate 

hyperparameters and regularization, (v) evaluating the model's performance on the validation 

dataset, (vi) fine-tuning and testing on a separate dataset, (vii) deploying the model for 

archaeological object recognition, and (viii) updating and refining the model as new archaeological 

objects are discovered or as the recognition requirements evolve. In the next stage, we will analyze 

pre-processed images of an area of interest taken in different seasons and in a different light, which 

practically allows the restoration of a 3D picture of the objects. 

Geophysical surface studies (in our case – precise magnetic investigations) will confirm the 

archaeological recovery results obtained at the previous stage. We will apply informational 

procedures for numerical integration of the data derived from the independent physical data. For 

this aim, the remote sensing and magnetic field data will be converted to specific informational 

units, and their algebraic sums will be calculated. Based on the a priori assumed thresholds, the 

anomalous zones corresponding to buried archaeological remains will be recognized.   

4.2 Example of a machine learning technique applied to remote sensing in northern Israel: 

Detecting earlier unknown targets  

The Early or Middle Bronze Age object is located about 1 km north of Ramathania (Figure 3), on 

the north bank of Nahal Zytan (northern Israel). It was reported as a site consisting of two 

concentric circles built of medium-sized field stones. The outer circle’s diameter is ~73 m, and the 

inner circle is ~ 30 m wide. Figure 4a shows the on-site photo of the object, and Figure 3b is the 

aerial photo of the set of two circles. 

It is well known that an onsite survey often does not allow recognition of regular patterns in 

large-scale archeological objects with typical sizes larger than tens meters, first, because of their 

typical poor condition and a wide scattering of the building material and, second, because of 

specificity of brain processing of the images incomparable with human size. In the case of the 



 
 

 

object shown in Figure 4, the aerial image gives a better understanding of its shape and 

peculiarities.  

Meanwhile, sometimes remote sensing images can provide even more information. Figure 

4c is a 2017 image of the site. One can recognize two sets of circles, indicated by numbers 1 and 2, 

instead of one (shown in Figure 4b). The Israel Antiquities Authority previously identified object 1. 

The second round-shaped object (2, on the left) (Figure 4c) is far less preserved but still 

recognizable by the eye. Finally, Figure 4d presents the restored and enhanced image shown in 

Figure 4c. 

 

Figure 3. Areal map of the Wadi Asekt (northern Israel) (Eppelbaum et al., 2024a, 2024b). 
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Using convolution, residual, and generative countermeasure neural networks for image 

improvement is a global trend not only in photography but also in different scientific disciplines 

when it is required to solve the so-called image super-resolution problem, restoring, and enhancing 

blur, noise, poorly exposed and broken images. Various interpolation methods and learning-based 

upsampling are used. Figure 4d shows a result of the image restoration and enhancement using the 

TensorFlow Hub Module for Enhanced Super Resolution Generative Adversarial Network. The 

result is comparable with aerial images. The next step is pattern recognition that can be done with 

another TensorFlow network https://github.com/tensorflow/models/tree/master/research/ 

object_detection . 

 

Figure 4. An example of an archaeological object recognizable from space is Object Wadi Asekt, Israel 

Antiquities Authority map No. 15/1, found by Ben Ephraim Yigal and Hertel Moshe. (a) on-site photo, (b) 

aerial view to the east, (c) Google Earth Pro 2017 image of the area, (d) Restored and enhanced image (c). 

Remote sensing image shows two similar round-shaped objects in the area. Circle 1 is object No. 15/1 

(Antiquities Authority map), and circle 2 is an unknown object (Eppelbaum et al., 2024a, 2024b). 

 

4.3 Integrating Remote Sensing Data with other geophysical methods  

It is most optimal to integrate the RS data with magnetic survey analysis. The developed 

multicomponent interpreting system includes (e.g., Eppelbaum, 2011, 2015, 2020): (1) removing 

secondary temporal magnetic variations, (2) a correlation method for eliminating rugged terrain 

relief, (3) calculation of subsurface layer magnetization, (4) classification of buried magnetized 

targets on geological and artificial (archaeological), (5) revealing typical archaeological targets by 



 
 

 

low ratio “signal/noise”, (6) quantitative analysis of magnetic anomalies under oblique 

magnetization, rugged terrain relief and unknown level of the normal field, (7) 3D magnetic field 

modeling of complex archaeological-geological sequence, (8) development of Physical-

Archaeological Models (PAMs). Remote Operating Vehicle (ROV) survey at various levels over 

the earth’s surface will provide additional preferences for quantitative analysis of observed 

magnetic data. 

It is also perspective to combine the ROV thermal imaging and Ground Penetration Radar 

(GPR) surveys in some perspective areas. Thermal imaging based on rock differentiation by 

thermal properties (Eppelbaum, 2009) will be correlated with the RS patterns. The GPR data 

(based mainly on the dielectric and electric rock properties (Küçükdemirci, and Sarris, 2022) will 

be processed using advanced information methodology and correlated with the RS patterns.  

 

Conclusions 

1. Application of advanced information-probabilistic methodologies provides an increment of 

reliability, 

2. Employing low-cost remote sensing (RS) methodologies armed with robust modern 

methodologies allows the discovery of new archaeological remains even in well-studied 

areas. 

3. The advanced application of the RS methodologies in northern and southern Israel allowed 

the detection of earlier unknown archaeological targets. 

4. The RS methodologies may be easily integrated with surface geophysical methods based on 

presented information-probabilistic technologies.  
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