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Abstract
Uncrewed Aerial Vehicles (UAVs) can be a cost-effective solution for capturing a comprehensive view of surface ocean phenomena to study marine 
population dynamics and ecology. UAVs have several advantages, such as quick deployment from shore, low operational costs, and the ability to be 
equipped with various sensors, including visual imaging systems and thermal imaging sensors. However, analyzing high-resolution images captured 
from UAVs can be challenging and time-consuming, especially when identifying small objects or anomalies. Therefore, we developed a method to 
quickly identify a diverse range of targets in UAV images.


We will discuss our workflow for accelerating the analysis of high-resolution visual images captured from a Trinity F90+ Vertical Take-Off and Landing 
(VTOL) drone in near-shore habitats around the Monterey Bay region in California at approximately 60 meters altitude. Our approach uses a 
state-of-the-art self-distillation with knowledge (DINO) transformer foundation model and multi-scale, sliced object detection (SAHI) methods to locate a 
wide range of objects, from small to large, such as schools or individual jellyfish, flocks of birds, kelp forests or kelp fragments, small debris, occasional 
cetaceans, and pinnipeds. To make the data analysis more efficient, we create clusters of similar objects based on visual similarity, which can be quickly 
examined through a web-based interface. This approach eliminates the need for previously labeled objects to train a model, optimizing limited human 
resources. Our work demonstrates the useful application of state-of-the-art techniques to assist in the rapid analysis of images and how this can be 
used to develop a recognition system based upon machine-learning for the rapid detection and classification of UAV images. All of our work is freely 
available as open-source code.

B) Challenges
Small Objects

Finding small objects in large images is 
challenging for both humans and machines. 
Our camera, model SONY RX1R II, captures 
7952 x 5304-pixel images or 42 megapixels. 
A pixel resolves to 0.77 cm.

Figure 2. Cluster of floating kelp

Surface Reflections

Images acquired by the UAV camera contain 
signals from multiple sources.

Water-leaving radiance is light reflected by 
objects at or under the surface, and our 
science applications mostly utilize this signal.

There are additional light sources that interfere with water-leaving radiance. Specular reflected 
sunlight produces sparkly "sun glint" on the water surface, and reflected "skylight" produces a blue 
or gray sheen on the water surface. Sun glint and skylight interfere with our ability to detect and 
identify objects of interest in the water, and so we design our aerial surveys and protocols to 
reduce those effects. The first two guidelines below are recommended to us by Dr Liane S Guild 
et al at the NASA Airborne Science Program, based on their extensive experience with 
aircraft-based remote sensing over water:

• Fly at Sun elevations between 30-45 deg, to minimize sun glint while maintaining acceptable 
water-leaving radiance. Solar elevation of less than 30 degrees results in low water-leaving 
radiance, which is problematic. There are one or two elevation "windows" each day, depending 
on latitude and season. Note that cloud cover may result in reduced sun glint even at higher Sun 
elevations.

• Orient survey legs to fly directly toward and away from the Sun, for more symmetrical lighting 
across the image width and to optimize the effects of a polarizing filter placed over the camera 
lens.

We place a circular polarizing filter over the lens of the UAV Sony RX1R II camera, which can 
significantly reduce sun glint and sky reflection when rotated at an appropriate angle. We rotate 
the filter before flight to the optimal angle for flights directly into or away from the Sun. Note that 
the camera isn't pointed straight down while in flight, but is pitched forward several degrees.

Reflections can cause many false detections, quickly overwhelming the downstream processing. 
Some reflections are mitigated by following the above guidelines and by polarizing filters on the 
camera, but software removal can also be helpful. Using an in-painting method adapted from 
specularity removal for endoscopic images, we can remove some, but not all, of the reflections.

Figure 3. Example reflectance removal with in-painting

Imbalanced Data

The frequency of observation of different classes varies dramatically, with some common in our 
survey areas (e.g., Kelp) and others rare (e.g., Otters), which is a challenge for automatic object 
classification. Perfectly balanced data improves performance in classification models but is 
unrealistic in real-world data. A small portion of the classes form the majority of data, while other 
classes of interest lack sufficient data to be representative – a long-tail distribution.

Figure 4.  
Localizations 
annotated with 
assistance from 
SDCAT from 6 
missions (13,348 
localizations from 
619 images) 
demonstrate the 
long-tail problem in 
real-world data. x 
axis: Number of 
Instances per 
Class. y axis: 
Classes Sorted in 
Decreasing Order 
of Number of 
Instances.

A) Motivation
The intersection of population dynamics and ecology demands a synoptic understanding of physical, chemical, and 
biological processes at the air-sea interface. Bridging the resolution gap between surface vehicles and satellites, 
Unmanned Aerial Vehicles (UAVs) emerge as a cost-effective and safer alternative to crewed aircraft. UAVs can fly 
under cloud cover, mitigate atmospheric effects, and gather data at centimeter-scale spatial resolutions. 

MBARI aims to coordinate UAVs with ships and Autonomous Underwater Vehicles (AUVs) for science surveys. We 
have begun this work by deploying a Trinity F90+ Vertical Take-Off and Landing (VTOL) drone. Here, we discuss our 
workflow for accelerating the analysis of high-resolution visual images captured from near-shore habitats around the 
Monterey Bay and Santa Cruz region in California at approximately 60 meters altitude.

First Application

• Bio-surveys over Monterey Bay
• Fly repeated transect lines and areas over a specified region
• Line-of-sight initial brief surveys, as the first step towards longer beyond line-of-sight
• Vertical Takeoff and Landing (VTOL) UAV is a good choice for this application: long-range, 

launch/land in confined space
• Utilize commercial COTS cameras (visible RGB to start)
• Assess datasets for jellies, plankton/kelp, birds, bioluminescence, fish, and more

Figure 1. Trinity flight vertical take off, Davenport Landing, California USA

C) Approach: Detection

Figure. SAHI: Slicing Aided Hyper Inference

SAHI (Slicing Aided Hyper Inference) is a method that improves the detection 
accuracy of small objects by running object detection on slices across the image. 
This method is slower than the saliency map detector but has the advantage that it 
can detect and classify in one step. It is optimized to run across slices and 
combine the results.

We found that models not necessarily trained on UAV images still work for general 
object detection by using them in a class-agnostic way with SAHI.

Figure 4. Results SAHI 
detection from a YOLOS 
(Vision Transformer) 
model trained with 
COCO 2017 (118k 
annotated images of 
everyday objects). 
Twelve slices, image 
rescaled to 30% of the 
original size, maximum 
area 30,000, minimum 
confidence threshold 0.1

Figure 5. Results SAHI 
detection from a model 
trained with our UAV 
data. Five slices, image 
rescaled to 30% of the 
original size, maximum 
area 30,000, minimum 
confidence threshold 
0.1. Seagull is detected 
as before but now is 
also classified.

With enough training data, this same approach is a complete workflow to detect 
and classify targets. Early results from a trained YOLOV5x model on the data we 
labeled with the help of this workflow are promising.

Fine-grained saliency map detection

Figure 6. (left) original image, (right) fine-grained saliency map

A faster method than SAHI leverages a fine-grained saliency map based on the 
luminance and saturation of the image. This produces a map on which a 
conventional blob detector is then run to detect blobs. Luminance is slightly 
weighted to strengthen brighter objects.

Both methods can be combined using NMS to leverage the strengths of each. This 
allows for continued discovery by combining SAHI, a supervised method, with 
unsupervised saliency detection.

E) Conclusions and Next Steps
Conclusions

Our approach uses a state-of-the-art DINO transformer foundational model and 
multi-scale, sliced object detection and saliency maps to locate a wide range of 
objects, from small to large, such as individual jellyfish, flocks of birds, kelp forests or 
kelp fragments, small debris, occasional cetaceans, and pinnipeds.

To make the data analysis more efficient, we create clusters of similar objects based 
on visual similarity, which can be quickly examined. This approach eliminates the 
need for previously labeled objects to train a model, optimizing limited human 
resources.

This method has been successfully applied to six missions, and localizations have 
been used to create an object detection model to improve object detection.

Our work demonstrates the helpful application of state-of-the-art techniques to assist 
in rapidly analyzing images.

All of our work is freely available as open-source code at 
https://github.com/mbari-org/sdcat 
 
Next steps

• Use the clustering algorithm for predicting classes. This could address the long-tail 
problem.

• Label more clustered detections, with a focus on rarely seen objects.
• Training on image slices or augmented data to improve the object detection model.
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D) Approach: Clustering DINO + HDBSCSN

Figure 7. Cluster Algorithm Workflow

We create clusters of similar 
objects based on visual similarity 
to make the data analysis more 
efficient. These can be quickly 
examined through grids exported 
by the toolkit.

Our approach uses a 
state-of-the-art DINO transformer 
foundational model trained on 142 
million images. Embeddings from 
images are collected into clusters 
based on cosine similarity. We 
found that the VITS14 worked the 
best to create clusters that were 
easy to interpret. To improve 
cluster coverage, outliers are 
assigned to the nearest cluster 
using exemplars with the highest 
score within a cluster.

Filtering

Figure 8. Example saliency scores. We found a lower value of 300 suitable for most objects of interest.

In addition to the maximum and minimum area, detections with a low saliency score or 
very low standard deviation in the saliency map are removed before clustering. The 
saliency is determined by a function that penalizes small objects with low variance 
based on the luminance and saliency map output.
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Fine-Grained Saliency Workflow


