

UNIL | Université de Lausanne

A physics-based approach for simulating future extreme design storms to assess flood risks

Nadav Peleg¹ and Francesco Marra^{2,3}

Sharing is

encouraged

¹Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland ²Department of Geosciences, University of Padova, Padua, Italy ³Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italy

> EGU General Assembly April 16rd, 2024

Motivation

- Extreme sub-hourly precipitation can lead
 to natural disasters such as flash floods,
 urban pluvial floods, and debris flows
- Quantification of the change in their
 statistics is essential in the context of
 climate change
- In hydrology most applications are considered using Intensity-Duration-Frequency (IDF) curves

Motivation

- Often, future IDF curves are derived from climate model data
- <u>Statistical limitations</u>: the bias-correction and downscaling procedures introduce uncertainties
- <u>Physical limitations</u>: climate models do not explicitly simulate convective precipitation, the most common sub-daily extreme rainfall event

Extreme rainfall intensification

♦ We do know that extreme sub-daily rainfall intensity should follow intensification at the rate of 7% °C⁻¹ on a global average (following the Clausius–Clapeyron relation)

Fowler et al., Nature Rev. 2021

The TENAX model

- We developed the **TE**mperaturedependent Non-Asymptotic statistical model for eXtreme return levels (TENAX)
- A **parsimonious** non-stationary and non-asymptotic theoretical framework that incorporates temperature as a

TENAX model

covariate in a physically consistent

Marra et al. HESS 2024

TENAX: Precipitation event magnitude model

- We use the Weibull distribution to model the magnitudes of sub-hourly ordinary precipitation events
- The Weibull parameters are explicitly dependent on near-surface air temperature as covariate
- An exponential dependence of the scale
 parameter on temperature is introduced
 following the Clausius–Clapeyron relation

Marra et al. HESS 2024

TENAX: Temperature model

The average temperatures observed
 during 24 hours preceding the peak
 intensities are well described by a
 Generalized Gaussian distribution

TENAX: Return level estimation

• The distribution of annual maxima is obtained with the Simplified Metastatistical

Extreme Value (SMEV) formulation (Marra el al., GRL 2020)

TENAX: evaluation (Aadorf station, 10-min)

Marra et al. HESS 2024

The TENAX model

The TENAX model

- Poster: "A physics-based statistical model to predict sub-hourly extreme precipitation intensification based on temperature shifts" presented by
 Francesco Marra
- Wednesday, 10:45–12:30
- Hall A | A.42

More info in the published paper: https://hess.copernicus.org/articles/28/375/2024/

Codes are freely available: https://doi.org/10.5281/zenodo.8345905

The TENAX-CDS model

- We propose a framework for adjusting
 IDF curves and design storms to future
 climate conditions
- Information from climate models at the daily scale can be used to construct design storms at the sub-hourly
- Our approach is illustrated through a reparameterization of the Chicago Design Storm (CDS)

Peleg et al. ADWR under review

The Chicago Design Storm (CDS)

The CDS approach enables a single
 synthetic storm to embed analytically a
 given precipitation return level for all
 durations of interest based on an
 intensity-duration curve

$$I(t_D; \mathcal{T}) = \frac{C_a}{(t_D + C_b)^{C_c}}$$

$$I(t_b; \mathcal{T}) = \frac{C_a \left((1 - C_c) (\frac{t_b}{r}) + C_b \right)}{\left(\frac{t_b}{r} + C_b \right)^{C_c + 1}} \qquad I(t_a; \mathcal{T}) = \frac{C_a \left((1 - C_c) (\frac{t_a}{1 - r}) + C_b \right)}{\left(\frac{t_a}{1 - r} + C_b \right)^{C_c + 1}}$$

TENAX-CDS: example

Peleg et al. *ADWR* under review

TENAX-CDS: example

Peleg et al. ADWR under review

Thank You!

UNIL | Université de Lausanne

• We have presented a new method for computing short-duration IDF curves and

design storms for flash flood assessments under increasing temperatures

- The physically-based TENAX-CDS model considers both thermodynamical and dynamical changes and is highly efficient in terms of its data requirements
- The TENAX-CDS code is freely available: <u>https://zenodo.org/records/10491542</u>

nadav.peleg@unil.ch

Marra, F., Koukoula, M., Canale, A., and Peleg, N. (2024)

Predicting extreme sub-hourly precipitation intensification based on temperature shifts Hydrology and Earth System Sciences

Peleg, N., Wright, D.B., Fowler, H.J., Leitao, J.P., Sharma, A., and Marra., F. (under review)

A simple and robust approach for adapting design storms to assess climate-induced changes in flash flood hazard

Advances in Water Resources