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Abstract. Air temperature is a pivotal variable influencing numerous chemical, physical, and biological 

processes. However, there is a notable scarcity of long-term data, especially at high elevations, exceeding 

2000 m a.s.l. This study focuses on reconstructing the daily maximum, mean, and minimum temperatures 

at Jungfraujoch (3571 m a.s.l.) since 1864. The approach involves daily data from ten meteorological 

stations within the ECA&D (6) and Meteo Swiss (4) databases. All selected stations are located at an 5 

elevation above 2000 m a.s.l. (in the range 2140-3109 m a.s.l.), providing uninterrupted observations 

spanning at least from 1961 to 2022. The proposed methodology includes the following steps: 1) for each 

meteorological station, in the calibration period 1980-1999, it was modeled the daily temperature at 

Jungfraujoch as the sum of the temperature at the selected station plus a deterministic and a stochastic 

component. The seasonality requires parameters with monthly variability which are different considering 10 

maximum, mean, and minimum temperature; 2) Then the 10 simulated time series at Jungfraujoch defined 

an “ensemble” daily temperature time series, as the mean of them; 3) Model’s performances was evaluated 

within two validation periods, 1961-1979 and 2000-2022 with correlation coefficients higher than 0.9 in 

both of them; 4) A further validation was made with the comparison between the “ensemble” mean daily 

temperature from 1864 and that estimated by Imfeld et al. 2023. 15 

Comparing the results with the existing literature, we highlighted: i) high performances without the need 

of modeling the observed trend due to the climate change (subjected to high uncertainty in the future), ii) 

very parsimonious model without the need of any other variables (relative humidity, cloud cover, wind 

velocity, weather patterns); iii) the importance of selecting stations at high elevation (above 2000 m a.s.l.) 

rather than considering closer (but lower elevation) stations, which may be subjected to the thermal 20 

inversion phenomenon or local factors; iv) the maximum temperature is affected by higher errors, especially 

from 2000-2022, which is probably due to the higher increasing of the summer and winter temperatures at 

high elevation accordingly to an elevation warming dependence; v) The method could be easily extended 

to other regions and these results could be used to make a backward analysis of many environmental 

processes (glacio-hydrological and permafrost), within the Jungfrau-Aletsch UNESCO World Heritage 25 

Site. 
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1. INTRODUCTION 

Air temperature is a measure of the thermal energy of the atmosphere and is mainly determined by the 30 

amount of solar radiation, which is absorbed by the Earth’s surface, and re-emitted with an increased 

longwave trapped in the troposphere by the greenhouse gases. Atmospheric and oceanic circulation and 

currents redistribute the heat across the Earth surface defining the shape of the regional temperature 

patterns. Air temperature affects many Earth system processes and phenomena:1) life cycles and traits’ 

evolution including physical, physiological and behavioral characteristics that favor organisms to regulate 35 

their body temperatures and survive within their geographic ranges (Sheldon and Tewksbury, 2014); 2) the 

rate of biological reactions, and enzymes’ function needed for photosynthesis, respiration and other 

processes essential for survival (Smith and Dukes 2013); 3) it is the main driver of the hydrological cycle, 

determining the clouds formation, the precipitation occurrence and the extent of snow and ice cover (Barnett 

et al. 2005, Kleidon and Renner 2013, Beniston et al. 2018). 4) The rate and direction of chemical reactions, 40 

including those in rocks, soil, water and atmosphere (Shepherd 2003, Ahmad and Rasul 2008, Romeo et al 

2015); 5) The amount of oxygen levels in the water and the frequency and intensity of fires 

(https://ugc.berkeley.edu/background-content/temperature/). From manual measurements with a simple 

thermometer in the past to modern remote sensing measurements with satellites, which enable real-time 

spatial coverage, monitoring air temperature is crucial, especially for studying the impacts of climate 45 

change on mountain environments. 

Collected and stored over long timescales, observational data form the foundation of science and these 

historical records reflect the memory of past weather conditions. High-quality time series data of 

meteorological observations, spanning over decades, or even centuries, allow scientists to study and 

understand the Earth’s climate, including its variations and trends (WMO 2022). 50 

Climate change and rising temperature are not uniformly distributed worldwide and certain regions are 

“climatic hotspots”. This is particularly true for the Mediterranean Region (Cos et al. 2022), the Arctic 

Region (Rantanen et al. 2022) and the European Alps (Gobiet et al. 2014). In recent decades, the warming 

in the Arctic has been much faster than in the rest of the world, a phenomenon known as Arctic 

amplification. The warming for high-elevation sites is linearly proportional to the temperature lapse rates 55 

(TLRs) along altitudinal and latitudinal gradients (Wang et al. 2016). This is a consequence of the functional 

shape of the Stefan-Boltzmann law in both vertical and latitudinal directions (Wang et al. 2016). 

During the past decades, the Alpine climate has been subjected to distinctive long-term trends consistent 

with the global climate response to increasing GHG concentrations. From the late 19th century until the 

end of the 20th century, Alpine temperatures have risen at a rate about twice as large as the Northern 60 

Hemisphere average, resulting in a total annual mean temperature increase of about 2°C (Auer et al 2007). 

The observed warming was particularly pronounced from 1980 onwards, with annual mean warming rates 

of about 0.5°C per decade. This acceleration, that is recorded even at planetary scale, is primarily attributed 

to water vapor-enhanced greenhouse warming (Beniston et al 2005, Philipona, 2013, Gobiet et al. 2014). 

Given the considerable temporal storage of water in form of snow and ice in the higher regions of the Alps, 65 

changes in high elevation climate are of particular interest for research on climate-related hydrological 

impacts in Alpine catchments (IPCC 2019). Observational evidence suggests that near surface temperature 
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trends can considerably depend on elevation, with higher rates of warming often found at high elevations 

(Gobiet et al 2014). This rule of thumb, however, is not always true and depends on the region and period 

under consideration (Rangwala and Miller 2012). The reasons for elevation-dependent temperature trends 70 

are manifold and include changes in large scale atmospheric circulation (Ceppi et al. 2012), as well as 

elevation-dependent changes in the surface energy balance induced by snow cover changes (Kotlarski et 

al. 2012; Scherrer et al., 2012), or changes in downward radiation fluxes following changes in atmospheric 

transmissivity (Philipona 2013). 

Anomalously strong warming at low elevations in autumn and early winter, along with above-average 75 

spring temperature trends at elevations close to the snow line is attributed to the declining of the snow cover 

and an amplification due to the snow albedo feedback (Sherrer et al. 2012, Ceppi et al. 2012).  

The temperature and precipitation data from in situ stations in mountain regions, along with global gridded 

data sets (observations, reanalysis, and model hindcasts) are used to investigate the elevation dependency 

of temperature and precipitation changes since 1900 (Pepin et al. 2022). Whilst the concept of elevation-80 

dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no 

consistent EDW profile at the global scale has been identified, but when a local comparison was made,  

mountain sites are usually warming faster than lower areas nearby (Mountain Research Initiative EDW 

Working Group, 2015). 

The combination of enhanced mountain warming, and reduced elevation dependency of rainfall/snowfall 85 

could cause a faster than previously assumed decline of mountain snow and ice (Pepin et al. 2022). In 

addition, Tudoroiu et al., (2016), found an even negative elevation dependent warming trend over the 

Eastern Alps, consistent for mean, maximum and minimum air temperature. The reason of this was found 

on the increasing global radiation at low elevations, and land cover and land use changes (abandonment of 

alpine pastures, expansion of secondary forest succession), which are local factors avoiding easy 90 

generalizations (Ohmura, 2012). 

Within the Switzerland territory, due to the high quality of the meteorological station network, in terms of 

high spatial resolution and standardized and homogenized daily temperature time series, many studies had 

aimed to define gridded dataset of the whole territory. Meteo Swiss provided it for the period 1961-2020 

(Meteo Swiss Spatial Climate Analyses, 2021). Pfister et al. (2020) provided a continuous spatial weather 95 

reconstruction for daily precipitation and temperature since 1864. They used an analogue resampling 

method (ARM) using station data and a weather type classification. An ensemble Kalman fitting approach 

and a quantile mapping were then applied in post processing. This is the first example of a dynamical and 

stochastic model which can offer new possibilities to make use of sparse information and enable to create 

spatial reconstruction of the past weather. Pfister et al. (2020) provided an open-source dataset (with 2.2 m 100 

resolution) repository on PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.907579). This dataset 

was then extended by Imfeld et al. (2023), defining a dataset of 258 years of daily temperature and 

precipitation fields for Switzerland from 1763 to 2020. This dataset was reconstructed with the analogue 

resampling method, based on the most similar day in a reference period. These fields are subsequently 

refined with data assimilation for temperature and bias correction for precipitation. Satisfactory validation 105 

results were founded prior to 1800 especially in the Swiss plateau (Imfeld et al. 2023). 
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Methods based on temperature lapse rates to reconstruct temperatures at high elevations are commonly 

used in the literature, and here they were analyzed for comparison. Commonly the WMO defines the dry 

adiabatic TLR at -1°C/100 m and a slower absolute value when cloudy or rainy days with high humidity 

rate persists (wet adiabatic value equal to -0.4°C/100m), but local conditions can have a strong influence 110 

on the temperature variability, such as in case of the thermal inversion typical for the winter season, with 

high diurnal temperature for steep slopes, brightened by the sun and cool pool air persisting on the valley 

bottom. The land cover can modify the temperature pattern, especially when the presence of snow abruptly 

increased the surface albedo, compared to rocks or bare soils, which absorb and re-emitted in a modified 

range of wavelength the solar radiation. The environmental lapse rate (ELR) of -0.65°C/100 m is commonly 115 

adopted as global mean value, and used in any modelling involving the use of climatic variables, such as 

hydrological models and mass balance snow and glacier simulations. 

Rolland (2003) focusing on several regions on Northern Italy, found a seasonal pattern in monthly gradient 

variations with steepest lapse rate during summer about the maximum temperature. In the South-Central 

Idaho region (USA), Blandford (2008) recommended the use of the monthly lapse rate as a practical 120 

combination of the effective performance and ease of implementation. Winter air masses tend to be 

associated with steeper lapse rates from maximum temperature and drier air masses rather than minimum 

temperature and wet conditions, which experience shallower lapse rates. 

A comparison of TLRs between northern and southern slopes of the Himalayas was made by Kattel et al. 

(2015). They found a distinct seasonal pattern of the TLR (steepest in winter and shallowest in summer), 125 

because in response to the monsoonal effect, the release of latent heat of water vapor condensation causes 

an increase in air temperature at high elevations. 

The steepest TLR occurs in winter, in association with intense cooling at higher elevations, corresponding 

to the continental dry and cold surges, and considerable snow-temperature feedback. The observed contrast 

of winter TLR from northern to southern slopes of the Himalayas is due to the differences in elevations and 130 

topography as well as the pronounced effect of cold air surges. In the last decade, more complex models 

were developed to best define the spatial temperature gradients. To model non linearities in the vertical 

thermal profile, Frei (2014) defined non-linear parametric function and a distance-weighting scheme with 

a non-Euclidean metric that accounts for terrain effects for the spatial variability. Improvements are found 

on the temperature patterns from basin-scale inversion with valley-scale cold air pools and foehn situations. 135 

Jobst et al. (2017) defined a novel method to tackle the low station density at high elevations and high 

temperature variability using a trivariate thin-plate spline model constrained to the elevations of the 

continuous network, and two TLR methods to scale air temperature above the first layer. These latter two 

were based on the dominant processes during lapse-rate variation: cold air ponding and spatial differences 

in relative humidity.  140 

Navarro-Serrano et al. (2018) analyzed the spatial and temporal variability of near surface lapse rate 

(NSLR) for continental Spain and their relationship to synoptic atmospheric circulation focusing on major 

mountain areas. The results showed that the NSLR varied markedly at spatial and seasonal scales and is 

depended on the dominant atmospheric conditions. They before calculated the median value for each 

subregion, which spanned from -5.80°C/Km to -4.67°C/Km less than the commonly used one of -145 
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6.5°C/Km. Inland heating and thermal inversions are responsible of the lowest values. Because of the high 

errors on the estimation of daily temperature, simply using a fixed value of the Environmental lapse rate, 

they suggest a method to account at the daily weather type classification and the monthly variability. 

Lute and Abatzoglou (2021) defined a guidance on best practices for estimating the lapse rate. They 

suggested to use a simple linear model rather than multiple linear regressions, and stations which can be 150 

considered topo-climatically similar. Temperature’s estimations errors arise when small sample size (<5 

years) or datasets with high noise or collinearity were considered.    

The present work is focused on the reconstruction of the daily maximum, mean and mean temperature time 

series from 1864 at the Jungfraujoch (Switzerland). This latter was chosen because is the highest 

meteorological station within the Swiss territory and is the reference of the ICOS network about the 155 

greenhouse gases monitoring (Cristofanelli et al 2023). Within the Aletsch Unesco world Heritage site, 

where the cryospheric components are pivotal factors for many environmental and biological processes, 

the peculiarity of its location makes the reconstruction of the daily temperature a reference for a backward 

analysis of the high elevation sites.  

Since mountains provide vital water resources to a significant proportion of the global population (Viviroli 160 

et al. 2007, 2011, Beniston and Stoffel 2014, Caty et al. 2018, Immerzeel et al. 2020), monitoring and 

protecting these resources from the combined impacts of growing demands and climate change is 

fundamental (Gleeson & Greenwood 2015; Singh & Thadani 2015, IPCC 2019). Motivations at the base 

of this study are: i) Make long-term temperature monitoring of mountain sites, as the Jungfraujoch; ii) Close 

the gap related to the lack of meteorological observations, affecting areas at high elevations. iii) Reconstruct 165 

the daily temporal time series of minimum, maximum and mean daily temperature at high elevations using 

stations at lower elevations and estimating the TLR parameter with monthly variability with a deep analysis 

of the residuals allows to define a low data requirements procedure without the need of any other observed 

variable, making this method easily expandable over other mountain chains. The use of an ensemble of 

stations is mandatory to obtain affordable results, especially when meteorological stations may present 170 

some missing data or problems.  

In the next, data descriptions and preliminary analysis are given in section 2, methods in section 3, results 

and discussion in section 4, conclusions and open issues in section 5. 

2. DATA DESCRIPTION AND PRELIMINARY ANALYSIS 

This work is focused on the European Alps, a 200 km wide and 800 km long mountain range extending 175 

from about 44 to 48 °N and 3 to 16.5°E. The highest peaks reach 4800 m a.s.l. (Monte Bianco), and its 

average elevation is approximately 2500 m. North Atlantic weather systems, the Mediterranean Sea and 

the large Eurasian land mass influence climate variability in the European Alps (Bohm et al., 2001; Beniston 

and Jungo, 2002; Begert et al., 2005; Auer et al., 2005). The North Atlantic Oscillation (NAO; Wanner et 

al., 2001; Hurrell et al., 2003) is the dominant climate mode for Europe, particularly controlling the weather 180 

patterns in western and northern Europe (Auer et al., 2001). 

The focus is the reconstruction of the maximum, mean, and minimum daily temperature at Jungfraujoch 

from 1864 (called in the following sections as target station TS) with an ensemble of 10 meteorological 
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stations (called in the following sections as backup stations BS). Daily temperature data come from two 

databases: 6 time series from ECA&d (European Climate Assessment & Dataset) and 4 retrieved from the 185 

Meteo Swiss. The position and the observation period for each of them are reported in Table 1 and Figure 

1. The choice of the Jungfraujoch as a target site, and of each meteorological station was made after a deep 

investigation of the major daily databases such as GHCNd, ECA&d, Meteo Swiss. The target site of the 

Jungfraujoch was chosen because is the highest meteorological station within the Swiss territory and is the 

reference of the ICOS network about the greenhouse gases monitoring (Cristofanelli et al 2023). The 190 

peculiarity of its location, within the Aletsch Unesco world Heritage site, where the cryospheric 

components are a pivotal factor for many environmental and biological processes, makes the reconstruction 

of the daily temperature a reference for a backward analysis of the high elevation sites. The 10 sites were 

selected accordingly to the completeness of each time series at least from the year 1961. Common features 

of the 10 sites are: everyone is situated within the European Alps; they are positioned at an elevation above 195 

2000 m; they are far from water body (lakes), they are positioned above a mountain ridge or a crest; they 

aren’t influenced by glacier katabatic winds, which characterize ice-covered surfaces; they are far from 

obstacles or slopes which can exercise a shadow effect. The selection of meteorological stations is a 

fundamental factor especially in mountain regions, because it’s mandatory to avoid some problems, which 

heavily affected the observed time series of temperature: the lack of the solar reflection screening which 200 

increases the maximum spring temperature when the snowpack persists above the ground and the solar 

radiation starts to grow; the persistence of cold air or wet air masses near a valley bottom, the thermal 

inversion phenomena typical for the winter season or during fohn events. From the existing literature, and 

about the Swiss territory, Frei (2014) found a non-linear vertical variation of the temperature with 

topographic height. In particular, within a very specific altitudinal range (generally from 1000 to 2000 m), 205 

he observed a sinusoidal increasing of the temperature with the elevation. This is the primary reason which 

suggests to avoid the use of the closest stations at the Jungfraujoch but placed in a range of elevation which 

can be affected by valley-scale and cold-air pools effects which can abruptly decrease the correlation 

between two meteorological stations positioned at different elevations. Before a detail description of the 

method section, a deep analysis of the observed time series was made. The data analysis consists on: i) 210 

quality check and calculation of the number of inconsistent or not available daily measurements with 

exclusion of time series with more than 5% of No data; ii) Focusing on the observation period 1961-2022, 

for each site, the yearly mean annual value time series of maximum, mean, minimum, temperature was 

calculated, and a moving average of 5 years was defined; iii) Based on the yearly moving average time 

series, a linear regression model was fitted within the period 1961-2022 and also, accordingly to the WMO’s 215 

guidelines, the same method was applied within the two thirty years period 1961-1990 and 1991-2022; iv) 

The trend’s significance was tested accordingly to the rejection of the null hypothesis of constant model 

with a p-value less than 0.1. Stationarity of the mean annual temperature time series was finally tested with 

the change point detection procedure (findchangepts Matlab function). v) Finally, among the different sites 

we compared the different trends and we investigate the presence of Elevation Dependent Warming (EDW).  220 

Parameters of the linear regression model, performances and the year of the changing point detected were 

described in Table S1 (Supplementary Materials). This analysis of the 1961-2022 period shows the non-
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stationarity of the mean annual temperature time series, with higher increasing of the maximum temperature 

rather than mean and minimum ones for all of the meteorological stations (Figure S1 and S2 Supplementary 

Materials). The fitted trend rates span from 0.0208 to 0.0391, 0.0263 to 0.0407, 0.026 to 0.0476 °C/y 225 

respectively for minimum, mean and maximum mean annual temperature. The target station of the 

Jungfraujoch shows the higher increasing of the mean maximum annual temperature. 

Accordingly, to the WMO guidelines the same procedure was applied on the two thirty years periods 1961-

1990 and 1991-2022 (Figure 2). We observed always a positive trend, which is higher for maximum 

temperature, especially in the period 1991-2022. The target site trend rate experiences a high increasing of 230 

the minimum annual temperature focused on the period 1991-2022. 

The changing points are, in most of the cases, positioned near the 1990 year and confirmed the right choice 

of splitting the observation period on two thirty-years long periods (Table S1 and Figure S1, Supplementary 

Materials). 

About the question of the Elevation Dependence Warming, considering the 1961-2022 period, it seems that 235 

there isn’t a clear of highest increasing of the minimum, mean annual temperature with the elevation. About 

the maximum, focusing on 6 of the 11 sites a linear positive increasing can be seen, but 11 sites are probably 

few to confirm the significance of this result (Figure S3 Supplementary Materials). Another question is if 

we considered the two thirty years periods, with a positive increasing of the trend rates for the minimum 

annual temperature and a negative one for the maximum annual temperature (Figure 3). Those results must 240 

be detailed, extending the investigations with a huge number of meteorological stations both in Europe and 

over the world, the elevation dependence warming is a vital open issue. 
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3. METHOD 

The daily temperature at the target station (TS), the Jungfraujoch, given a backup station (BS), ���|��,��	 , 245 

is defined as the sum of three components: 

���|��,��	
�� = ���,���
�� + �����,�
��� − ���� + ���,�
��                                              
1� 

1) ���,��� is the observed daily temperature at the backup station (BS) (here one of the ten considered in 

the analysis see Table 1); 2) a deterministic component which is the product of the temperature lapse rate �����,� and the elevation difference between the target and the backup station 
��� − ����; 3) ���,� is a 250 

random noise which comes from the statistical distribution of the residuals. The subscript “m” refers to the 

monthly variability of the parameters which is mandatory to follow the seasonality temperature’s behavior, 

while the subscript “���” means modelled. 

Focusing on the period 1961-2022, we selected the 1980-99 period to estimate the model’s parameters 

(Calibration Period) and the others 1961-79 and 2000-2022 to evaluate the performances in the past and in 255 

the future (Validation Periods). For each couple of TS and BS, within the calibration period, the TLR 

parameter was estimated defining a possible range of variability from -1 to +1°C/100 m and calculating the 

sum of squared errors between observations and simulations. The optimal value of the TLR is that which 

minimizes the sum of squared errors. The difference between the observed time series and the deterministic 

component defines the residuals:  260 

���,�
�� = ���,���
�� − ���,���
�� − �����,�
��� − ����                                             
2� 

 

For each month, using the Matlab “fitdist” function, with the maximum likelihood method, the parameters 

of four statistical distributions (Normal, GEV, Stable, TLocationScale) were estimated. Kolmogorov 

Smirnov and Anderson Darling tests at 5% of significance level were applied to confirm or discard each 265 

distribution and theirs lowest values suggested the best. The calibration phase defines 12 values of the TLR 

and depending of the best statistical distribution, from 24 to 48 parameters for the residual component. To 

evaluate the model’s performances in both calibration and validation periods, four indices of performance 

were considered, comparing the observed (obs) and modeled temperature (mod): the Pearson coefficient ��, the Spearman’s rho ��, the Kendall’s tau ��, and the root mean square error RMSE. In the next, we 270 

provide the formulas to calculate the empirical estimates.   

 �� = ∑ 
�!"#$%
&�'�!"#$%(((((((((()*+, �
�!"|-".#/
&�'�!"|-".#/((((((((((((((((�
0∑ 1�!"#$%
&�'�!"#$%((((((((((234*+, ∙0∑ 6�!"|-".#/
&�'�!"|-".#/((((((((((((((((734*+,                        
3� 

�� = 1 − 6 ∑ �&:;&<=n
n: − 1�                                                                       
4� 
�� = 2@
@ − 1� A BC@
������
�� − ������
D��BC@E���|����	
�� − ���|����	
D�F;

&GH          
5� 
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�JKL = M1@ A6���,���
�� − ���|��,��	
��7:;
&<=                                                             
6� 275 

For each index the symbols meaning are: n the number of days, ������ is the daily observed time series, ���|����	 is the daily modeled time series related to each couple TS|BS; the overlined symbols such as ������(((((((( defines the mean of the variable within the considered period (Calibration or Validation). About the 

Spearman’s correlation coefficient, �&: is the square of the difference between the rank of the observations 

and the rank of the estimations at daily scale. Within the Kendall’s Tau formula “sgn” is the sign function 280 

that return the sign of a real number. 

Repeating this procedure for all the 10 meteorological stations, we obtained 10 estimations of the daily 

temperature time series at the target site, and we calculated the ensemble as the mean of them: 

���,N;�
�� =  1� A ���O,���
�� + �����O,�E��� − ���OF + ���O,�
��                                   
7��
Q<=  

The comparison between the observed time series and the “ensemble” one allows to calculate and evaluate 285 

the ensemble performances based on the same indices previously defined (Eq.s 3-6). Because some stations 

started the observations from 1864, we extended the simulation period backward to obtain the daily time 

series at the Jungfraujoch site from that year. We highlight that the coverage of the observed time series 

did not allow always to have 10 stations to make the mean, so the ensemble, sometimes is based just on 1 

or 2 stations. A further validation of the estimated mean daily temperature time series within the period 290 

1864-1933 was made by the comparison with the one obtained by Imfeld et. al (2023) 

(https://doi.org/10.1594/PANGAEA.950236). From this last, we selected the closest grid point with the 

lowest elevation difference compared to the target station position (the elevation was estimated by google 

earth and its coordinates are: 46.54937 N; 8.005821 E; 3565 m a.s.l).  

The reconstruction of the high elevations sites with the TLR method is not a novelty in literature (Rolland 295 

2003, Pepin et al. 2005, Blandford et al. 2008, Minder et al. 2010, Kirchner et al 2012, Petersen et al. 2013, 

Kattel et al. 2015, Jobst et al. 2017), and gave good results, especially for the mean monthly temperature 

time series estimation. Improvements of our work are: a statistical model of the residual component, is a 

pivotal factor to estimate the variability, which can be really different for each season and for each variable 

(maximum, mean or minimum temperature). A good statistical model, allows, with a Montecarlo method 300 

to randomly generate random sample from these distributions defining model’s estimation uncertainty and 

not just their mean values. Moreover, the definition of an “ensemble” simulation which is based on many 

meteorological stations, makes the estimations much more reliable and less exposed to the harsh 

meteorological conditions which can damage the specific monitoring sites. With the support of other 

stations, just with 20 years of overlapping observation period between the target sites and back-up station, 305 

models can be calibrated and the temperature time series can be extended at the same observation period 

length of the back-up station. The simplicity, parsimony, low data requirements, without need of any other 
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measured variables (relative humidity, wind velocity and direction, meteorological weather pattern, solar 

radiation, cloud cover) of the proposed method may represent points of a strength.  

  310 
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4. RESULTS AND DISCUSSION 

Model’s performances were compared in both calibration and validation periods, initially for each station 

and then considering the “Ensemble”. Then, the long-term time series at the target site was analyzed. 

4.1 Model’s parameters: TLR 

The temperature lapse rate is the parameter which states the rate at which the air will cool with the elevation. 315 

In case of no heat exchanged with the outside system the cooling is adiabatic. This parameter varies from 

about -0.98°C/100m for dry air (i.e., the dry-air adiabatic lapse rate) to about -0.4°C/100 m (i.e., the 

saturated adiabatic lapse rate; Dodson and Marks 1997). However, the process is rarely adiabatic and many 

factors can influence the temporal and spatial variability of it (cloud cover, land cover, wind conditions, 

weather pattern). An environmental lapse rate of -0.65°C/100 m is a typical value used for its global mean 320 

and is commonly used in most of the models which simulate the earth surface processes (hydrological, 

meteorological, biological). 

In Figure 4, the monthly variability of the TLR parameters estimated within the period 1961-2022, 

comparing the temperature at the target and back-up stations pooling together all the sites are showed. 

Our results indicate strong seasonal variability in the median and IQR range, which greater absolute values 325 

and lower dispersion in summer months, compared to the less steep values in the winter season. The TLR 

median values differ between minimum and maximum temperatures. For minimum temperature, the range 

of monthly median values spans from: -0.54°C/100 m to -0.62°C/100 m, with lower monthly variability, 

compared to the maximum temperature where the range falls within: -0.48°C/100 m to -0.69°C/100m. 

In terms of the IQR range, winter months - January, February, November, and December- experience the 330 

high variability from 0.11°C/100 m to 0.15°C/100 m for both maximum and minimum temperatures. These 

higher values are consistently observed in maximum temperature for each of these months. Conversely, the 

mean temperature shows lower variability (Table 2). 

These results confirm the seasonal variability of the temperature-elevation dependence decreasing and the 

importance of considering different values for each of the 3 temperature variables (Max, Mean, Min). 335 

Particularly our results are comparable with those found in literature from Rolland et al. (2003), Navarro 

Serrano et al. (2018), which highlighted that the uncertainty of considering the constat environmental lapse 

rate of -0.65°C/100m is really high and not suitable to reproduce with enough precision the daily 

temperatures. 

The optimal values of the TLR parameters for each station, that will be used for the reconstruction of the 340 

long-term time series, was reported in the Table S2 and Figure S4 (Supplementary Materials). These values 

have been obtained minimizing the sum of squared errors between the observations and the deterministic 

part of the modeled time series, within each month of the period 1980-1999. About the minimum 

temperature, the TLR values are more or less the same among 8 of the 10 back-up stations, with values 

within the range -0.4°C/100 m to -0.7°C/100 m. About the maximum temperature the seasonal shape is 345 

much more evident, and the annual excursion is from -0.4°C/100 m to -0.9°C/100m. Steeper values were 

found in summer and early autumn and lower ones in November and winter months. The mean temperature 

stays in the middle. Related to all of the three variables the meteorological station of Sonnblick gives the 
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lowest absolute values and can be considered as an upper bound, especially for maximum temperature and 

generally for winter months.  350 

The Figure S5 (Supplemetary materials) shows the boxplot of the annual TLR distribution among all of the 

10 back-up stations from 1961 to 2022. From these graphs we recognize the high variability which affects 

the maximum temperature and a sinusoidal trend of the median values especially for maximum and 

minimum temperatures. Any positive or negative linear trend can be identified even if the median TLR 

time series cannot be defined as constant. 355 

The choice of the calibration period from 1980-1999 (which was selected independently and without 

knowing this information) seems appropriate, because the variability in this period can be considered as the 

same compared to the other 20 years long periods. An exception is the 1981 year about the maximum and 

mean temperature, with an extreme lower value compared to the other 61 years.  

The median values of the TLR seems to have higher values in the last 20 years period 2001-2020 about the 360 

maximum temperature.  

4.2 Residuals’ distributions 

Residuals are defined as the difference between the observed daily temperature time series at the target site 

and the modeled one, using the observations from each of the backup station (Eq.2). Concerning the 

calibration period, the residuals statistical distribution was fitted for each month and then selected 365 

accordingly to the lowest values of the statistical tests (Kolmogorov-Smirnov and Anderson-Darling). A 

statistical analysis of the residuals is important to define the variability and the uncertainty of the model’s 

estimations. Figure 5 shows for each month and related to the maximum, mean and minimum temperature 

the kernel density functions mirrored on the vertical axis (violin plot). These distributions come from the 

pooling of all the daily residuals for all the 10 meteorological stations considered within the calibration 370 

period (10 backup stations for 20 years of 365 days). 

Frome these graphs we remarked the higher variability of the maximum temperature which shows 

higher standard deviation values. The mean values are close to 0, which demonstrate that the model 

isn’t affected by a constant over/underestimation. In  

Table 3, statistical indexes of mean, standard deviation, skewness and kurtosis coefficients help to 375 

summarize better differences among the three variables.  

About the distribution’s asymmetry we found always positive values (right tailed distributions) with higher 

values in winter months for minimum temperature. The kurtosis coefficients, pointed out a quasi-normal 

behavior about the summer residuals of the maximum temperature (values close to 3). All of the kurtosis 

coefficients are generally higher than 3 which stave off from the normality. Within the supplementary 380 

materials, on Table S3, about each station and for each month, the best distribution was reported. Generally, 
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the Generalized Extreme Value distribution explains better the variability of the winter months, rather than 

the Stable and T-Location which perform better for summer months. 

4.3 Model’s performances 

The evaluation of model’s performances started with the analysis of the results obtained for each of the 10 385 

meteorological stations and then focusing on the ensemble within the calibration period 1980-99 and the 

validation periods 1961-1980 and 2000-2022. 

The calibration period, from 1980-1999 was selected because of two reasons: 1) the changing 

point analysis of the observed time series reported in section 2 showed that, in most of the cases, 

close to the year 1990, the mean annual temperature was subjected to the highest increasing; 2) in 390 

this way the model can be evaluated in a subsequent period (2000-2022) but mainly also in a 

previous one (1961-1980). In the  

Table 4, RMSE and Pearson's correlation coefficient were calculated for all the three variables and the 10 

stations and at the end about the ensemble. The last two rows of each table show maximum and minimum 

values among them. In the calibration period the RMSE spans from 2.26°C to 3.32°C, 1.56°C to 2.95°C, 395 

and 1.79°C to 3.30°C respectively for maximum, mean and minimum temperatures. High correlation 

coefficients between modeled and observed time series was found, with values which spans from 0.87 to 

0.945, 0.90 to 0.97 and 0.88 to 0.97 always for the same variables in the same order. 

Comparable performances, or even slightly better, were obtained in the validation period 1961-1979 about 

all the three variables. The 2000-2022 validation period shows higher errors about the maximum 400 

temperature (from 2.39°C to 3.42°C) but better for mean and minimum temperatures (1.56°C to 2.90°C 

and 1.72°C to 3.22°C). These results can be partially explained by the analysis of the observed trends which 

affected differently the observed 10 time series as explained in section 2. In addition, maximum temperature 

can be also affected by an elevation dependent warming, or accordingly with the Stefan Boltzmann law, 

the rate of temperature increasing is higher at high temperature due to the nonlinear relationship between 405 

the longwave outgoing flux from the earth surface and its temperature. 

The validation period 1961-79 experiences an increasing of the mean annual temperature which is generally 

smaller than that observed in the last 30 years. So, the different trend rates between the Jungfraujoch target 

site and any of the others backup stations is a source of errors within a single model. 

RMSE values are, however, smaller than those found in literature about the same area of the Swiss territory 410 

from Pfister and Imfeld in some past works (Pfister et al. 2020, Imfeld et al. 2023). 

From Table S4 (Supplementary Materials) we analyzed rank-based correlation coefficients of Spearman 

and Kendall, which confirmed the model’s capability to follow the same trend of the observed variables at 

the target site even if it can be different from the linearity. Spearman’s correlation coefficients span from 

0.88 to 0.98 both in the calibration and validation periods. Kendall’s tau coefficients span from 0.70 to 0.87 415 

both in calibration and validation periods.   

Finally, since our aim is to define a reliable long term time series also in the past, we defined the ensemble 

as the mean of the ten time series which comes from each couple of back-up/target stations. In this way 

performances are significantly better especially for the mean temperature: the RMSE and the Pearson 
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correlation coefficients within the period 1961-2022 are: 2.25, 1.85, 2.14 °C and 0.89,0.92 and 0.91about 420 

maximum, mean and minimum temperatures. The high values of the correlation coefficients can be 

visualized within the Figure 6, which, on the panel left, shows the scatterplot between the observed and 

modeled time series and we highlight that most of the points stay close to the 1:1 line, visually confirm the 

performances previously described. The panel right compares the mean daily errorbar always in the period 

1961-2022; we can see that the mean daily temperature is really close to the observed one.  425 

Maximum temperatures are affected by higher errors in January, February October and December rather 

than the minimum which shows higher distances in January, February and October. Slight underestimation 

was found for all of the three variables during the year. 

 

4.4 Long-term time series reconstruction 430 

The ensemble estimation of the daily temperature time series at the target station from 1864, was obtained 

as the mean of all the 10 estimations, related to each station. We highlight that the overlapping period of 

observation among the 10 sites was without lack of data just from 1961 to 2022. For the period 1864-1900 

the Col Du Grand Saint Bernard is the only site in which maximum and minimum daily observations are 

available, After the year 1900 at least 3 stations allow to estimate the temperature at the target site (Figure 435 

7) About the mean temperature, the observation started from 1933, and results showed a good agreement. 

The yearly mean of all the estimated time series is pretty close together especially after the 1960 (Figure 

7). The observed time series constitutes generally the upper boundary especially in the last 20 years 

compared to the 10 estimated time-series. 

The mean annual temperature at the target site shows stable values from 1864 to 1960, a slight increase 440 

from 1960 to 1980 and a significant increase from 1980 to 2022. Is important to highlight that the Col Du 

Grand Saint Bernard meteorological station, the only available station before 1900, shows high mean values 

on the maximum temperature with an abrupt positive shift compared to the mean values which come later 

than the 1900 from the Zugspitze, Sonnblick and Rudolshuette sites. Maximum temperature rises more than 

mean and minimum ones during the last 60 years. 445 

Finally, Figure 8 shows the estimation of the daily time series at Jungfraujoch from the 1864. Here we 

reported just the yearly errorbar of the observed time series (red color) and the ensemble simulation (blue 

color). We highlight on the upper right part of the figure the subdivision on simulation, calibration and 

validation periods defined in the previous chapters. Each subplot shows the same high performances within 

the two validation periods about the yearly Minimum and Maximum temperature and an even better results 450 

for the mean considering the 1933-1961 subperiod. The amplitude of the errorbar is a visual confirm that 

also the variability is well reproduced. 

4.5 Comparison with the gridded dataset published by Imfeld et al 2023 

For a further validation of the long-term mean daily temperature “ensemble” time series, we considered a 

high-resolution (1km x 1km), daily reconstructions of temperature fields for Switzerland from 1763 to 2020 455 

estimated using the analogous resampling method and subsequent data assimilation (Imfeld et al. 2023). 
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From this database, the mean daily temperature of the closest grid point (46.54937 N; 8.005821 E; 3565 m 

a.s.l, 1.6 Km far from the TS station) to the Jungfraujoch station, was selected for a comparison. 

Observations started from 1933, and we can observe a good agreement in mean annual temperature and 

errorbars, especially before 1980. Discrepancies slightly increase within the period 1990-2010 while in the 460 

period 1864-1932, we found a very good agreement between the “ensemble” and values which come from 

the work of Imfeld et al. (2023) both for the mean and errorbars. (Figure 8). 

Figure 9 compares the ensemble mean daily temperature and the values from Imfeld et al. 2023 within the 

period 1864-1932. Comparing the ensemble mean daily temperature in the 1864-1932 period, we calculated 

a root mean square error less than 2 °C and a correlation coefficient higher than 0.9 which is similar to the 465 

one between the observed and simulated time series within the period 1961-2022. The ensemble simulation 

has lower variability especially in January and February and similar one in the rest of the year. As we 

expected the variance is higher in these months compared to the spring and autumn seasons. 

 

  470 
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5. CONCLUSIONS 

Starting from long time series of daily temperature observations from 10 meteorological stations from 

ECA&d and Meteo Swiss databases we reconstructed the historical time series at the Jungfraujoch. 

A meticulous selection of each site was primarily undertaken, focusing solely on mountain peak stations 

with elevations higher than 2000 m. In this way we minimize the thermal inversion phenomena. After that 475 

we defined a model which estimated the daily temperature at the target site as the sum of the observed 

temperature at the back-up station plus a deterministic and a stochastic component. The first is the product 

of the temperature lapse rate and the elevation difference between target and backup station. The second 

one describes the statistical distribution of the residuals. The temperature lapse rate, with a monthly 

variability, is estimated minimizing the sum of squared errors within the calibration period 1980-1999. The 480 

parameters values are comparable to those found in literature about the same area. Generally steepest values 

were found in winter about the minimum temperatures and in summer for maximum temperatures. The 

median values span from -0.48°C/100 m to -0.69°C/100 m considering the pooling of all the stations for 

the whole observation period 1961-2022. TLR of maximum temperature shows the highest variability. 

About the residual’s distributions, the best one among GEV, Normal, Stable and T-Location was selected 485 

accordingly to the minimum values of the statistical tests of Anderson-Darling and Kolmogorov-Smirnov. 

Extreme value distribution fit well winter months and maximum temperature. About minimum temperature 

and summer months they experience much more stability. 

Analyzing the moments of the residuals, we found always mean monthly values near 0, a generally positive 

skewness coefficient and a kurtosis coefficient greater than 3, which highlight a slightly greater dispersion 490 

than the normal one. 

Even if the TLR method isn’t new in literature a good study of the residual’s component is mandatory to 

describe the estimation’s uncertainty. 

Finally, the “ensemble” time series of minimum, mean and maximum temperature at the target site of 

Jungfraujoch was calculated. This latter allows to increase the model’s performances with correlation 495 

coefficients higher than 0.9 and RMSE equal to 2.25, 1.85, 2.14 °C respectively for maximum, mean and 

minimum temperature within the period 1961-2022. Maximum temperature is affected by greater errors 

and higher variability probably because of the different increasing rates with the elevation, correlated at the 

climate change. 

With the same method, we reconstructed the long-term daily temperature time series at Jungfraujoch since 500 

1864. This latter can be a starting point for a comparison with other atmospheric variables (greenhouse 

gases, solar radiation, relative humidity) or can be the driver for hydrological or glaciological models. 

In addition, it can be compared with other high elevation time series to better understand this unique, poor 

monitored and harsh environment rich of biodiversity.  Future works can arise: the same method could be 

applied in other mountain chains over the world studying the difference among them (Himalaya, Tibetan 505 

plateau, Ande, Rocky Mountains). The strength point of this method consists in its low data requirements 

because it needs just daily temperature observations without any others measurements of atmospheric 

variables, which are not generally measured at high elevation sites (relative humidity, solar radiation, 
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weather pattern). The only requirement is a proper selection of the meteorological stations with consistent 

and reliable dataset and a rigorous analysis of the residuals. Another improvement can be related to the 510 

temporal resolution of dataset. Using hourly resolution probably the calibration period can be reduced and 

the model can be refined to estimate the diurnal variability.  
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Tables 

ST CODE NAME Database Lat. Long. Elevation [m] From To 

VIL Villacher Alpe ECA&D 46°36'12'' 13°40'23'' 2140 1921 2022 

ZUG Zugspitze ECA&D 47°25'20'' 10°59'12'' 2964 1901 2022 

SON Sonnblick ECA&D 47°03'15'' 12°57'27'' 3109 1886 2022 

PAT Patscherkofel ECA&D 47°12'32'' 11°27'43'' 2251 1940 2022 

KRE Kredarica ECA&D 46°22'43'' 13°50'56'' 2513 1955 2022 

RUD Rudolfshuette ECA&D 47°08'00'' 12°37'00'' 2304 1961 2022 

GUE Gütsch MeteoSwiss 46°39'00’’ 8°37'00’’ 2286 1954 2022 

GSB 

Col du Grand St. 

Bernard MeteoSwiss 45°52'00’’ 7°10'00’’ 2472 1864 2022 

SAE Säntis MeteoSwiss 47°15'00’’ 9°21'00’’ 2501 1882 2022 

WFJ Weissfluhjoch MeteoSwiss 46°50'00’’ 9°48'00’’ 2691 1959 2022 

JUN Jungfraujoch Meteo Swiss 46°33'00’’ 7°59'00’’ 3571 1933 2022 

Table 1. Meteorological stations characteristics. 

 5 

TLR [°C/Km] PARAMETERS (1961-2022) 

Var Index J F M A M J J A S O N D 

T Min Med -0.0054 -0.0055 -0.0058 -0.0062 -0.0062 -0.0061 -0.0060 -0.0061 -0.0057 -0.0056 -0.0056 -0.0053 

IQR 0.0012 0.0014 0.0010 0.0010 0.0008 0.0008 0.0009 0.0008 0.0009 0.0010 0.0012 0.0011 

T Mean Med -0.0051 -0.0053 -0.0057 -0.0061 -0.0062 -0.0064 -0.0065 -0.0066 -0.0060 -0.0056 -0.0054 -0.0051 

IQR 0.0012 0.0012 0.0011 0.0009 0.0009 0.0009 0.0009 0.0009 0.0011 0.0010 0.0011 0.0011 

T Max Med -0.0048 -0.0051 -0.0054 -0.0059 -0.0060 -0.0064 -0.0068 -0.0069 -0.0062 -0.0057 -0.0052 -0.0049 

IQR 0.0014 0.0015 0.0014 0.0012 0.0014 0.0014 0.0015 0.0014 0.0016 0.0015 0.0012 0.0012 

Table 2. Median and interquartile range of the TLR parameter for Minimum, Mean and maximum temperature. Results 
come from the statistical analysis of the 10 meteorological stations for the whole 1961-2022 period. 

 

RESIDUALS STATISTICAL INDEXES (1980-1999 All Stations) 

Variable Index J F M A M J J A S O N D 

T Max 

Mean [°C] 0.000 -0.027 0.036 0.023 -0.039 0.015 -0.029 0.014 0.021 -0.020 0.031 -0.020 

Std [°C] 2.966 3.123 2.970 2.717 2.654 2.617 2.580 2.680 2.704 2.719 2.893 2.975 

Skewness 0.567 0.283 0.301 0.269 0.323 0.156 0.329 0.269 0.364 0.346 0.440 0.598 

Kurtosis 4.803 3.719 3.613 3.683 3.677 3.923 3.428 3.410 3.574 3.554 4.110 4.956 

T Mean 

Mean [°C] -0.001 -0.024 0.041 -0.003 -0.025 0.012 -0.015 0.001 0.019 -0.003 0.008 -0.009 

Std [°C] 2.520 2.692 2.365 2.237 1.975 1.826 1.707 1.866 2.010 2.251 2.472 2.695 

Skewness 0.673 0.491 0.350 0.597 0.478 0.226 0.238 0.357 0.655 0.635 0.586 0.819 

Kurtosis 4.970 3.918 3.679 4.231 4.827 5.347 3.910 4.460 4.767 4.467 4.449 5.446 

T Min 

Mean [°C] -0.002 -0.008 0.028 -0.022 -0.005 0.018 -0.018 -0.005 0.011 0.005 -0.012 0.002 

Std [°C] 2.982 3.161 2.648 2.494 2.152 1.967 1.904 1.994 2.275 2.684 2.808 3.168 

Skewness 0.842 0.649 0.485 0.567 0.383 0.153 0.265 0.406 0.640 0.725 0.600 0.916 

Kurtosis 5.350 4.007 4.124 4.508 5.696 4.583 4.071 5.518 5.079 4.670 4.482 5.413 

 

Table 3. Mean, Standard deviation, Skewness and Kurtosis coefficients of the residual’s distributions for each month. 10 

These values are obtained considering the pooling of all of the 10 meteorological stations within the calibration period. 
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T Max - RMSE [°C]  T Max - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 3.082 3.274 3.319  VIL 0.883 0.870 0.875 

ZUG 2.408 2.730 2.585  ZUG 0.932 0.914 0.931 

SON 2.839 3.121 3.162  SON 0.899 0.880 0.885 

PAT 2.855 2.958 3.051  PAT 0.908 0.899 0.903 

GUE 2.325 2.410 2.407  GUE 0.935 0.935 0.940 

GSB 2.223 2.256 2.409  GSB 0.943 0.939 0.940 

SAE 2.240 2.332 2.392  SAE 0.945 0.937 0.943 

WFJ 2.189 2.421 2.425  WFJ 0.939 0.933 0.941 

KRE 3.078 3.317 3.424  KRE 0.890 0.875 0.879 

RUD 3.108 3.197 3.195  RUD 0.895 0.880 0.889 

Max 3.108 3.317 3.424  Max 0.945 0.939 0.943 

Min 2.189 2.256 2.392  Min 0.883 0.870 0.875 

         

T Mean - RMSE [°C]  T Mean - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 2.995 2.946 2.899  VIL 0.894 0.897 0.903 

ZUG 1.841 1.886 1.999  ZUG 0.961 0.959 0.956 

SON 2.785 2.807 2.782  SON 0.909 0.906 0.910 

PAT 2.521 2.489 2.520  PAT 0.926 0.929 0.931 

GUE 1.773 1.561 1.556  GUE 0.964 0.971 0.973 

GSB 1.958 1.686 1.680  GSB 0.956 0.966 0.969 

SAE 1.751 1.714 1.699  SAE 0.966 0.966 0.968 

WFJ 1.630 1.596 1.621  WFJ 0.972 0.972 0.973 

KRE 2.730 2.746 2.765  KRE 0.919 0.921 0.924 

RUD 2.883 2.756 2.735  RUD 0.907 0.913 0.918 

Max 2.995 2.946 2.899  Max 0.972 0.972 0.973 

Min 1.630 1.561 1.556  Min 0.894 0.897 0.903 

         

T Min – RMSE [°C]  T Min - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 3.055 3.296 3.209  VIL 0.900 0.884 0.891 

ZUG 2.133 2.551 2.422  ZUG 0.953 0.938 0.947 

SON 2.760 3.127 3.075  SON 0.922 0.896 0.900 

PAT 2.448 2.766 2.754  PAT 0.937 0.921 0.924 

GUE 2.055 1.794 1.721  GUE 0.955 0.964 0.968 

GSB 2.143 1.877 1.777  GSB 0.952 0.961 0.967 

SAE 2.032 1.887 1.867  SAE 0.959 0.962 0.964 
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WFJ 1.890 1.821 1.783  WFJ 0.960 0.966 0.968 

KRE 3.031 3.249 3.226  KRE 0.905 0.890 0.893 

RUD 2.900 3.179 3.099  RUD 0.913 0.898 0.906 

Max 3.055 3.296 3.226  Max 0.960 0.966 0.968 

Min 1.890 1.794 1.721  Min 0.900 0.884 0.891 

         

Ensemble Performances     

  RMSE [°C]  rP ρSp τk     

T Max 2.247 0.946 0.941 0.800 
    

T Mean  1.852 0.965 0.961 0.840 
    

T Min 2.142 0.956 0.952 0.822 
    

 

Table 4. Model's performances evaluation within the calibration period 1980-99 and the validation periods (1961-79 15 

and 2000-2022). RMSE and Pearson correlation coefficients were reported with the 10 backup stations and for the 

ensemble simulation. 
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Figure 1. Panel Left: Case study Area. Panel Rigth: Locations and ID of the 5 meteorological stations from Meteo 
Swiss database (green and red dots), and 6 from ECA&d (blue dots).  

 

 20 
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Figure 2. Mean annual temperature analysis of observations: Trend comparison among the 11 meteorological stations 

considered. (Just significative trends and time series with less than 5% of No data were plotted)  
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Figure 3. Trend Analysis of the mean annual temperature observed time series against the meteorological stations’ 

elevations. Even if 10 meteorological stations are few to fit a trend it seems that there is a positive EDW for minimum 25 

annual temperature and a negative one for maximum annual temperature within the period 1991-2022. 
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Figure 4. TLR boxplot monthly comparison for maximum (red), mean (green) and minimum (blue), temperature within 

the period 1961-2022 for all of the meteorological stations. Red Dashed lines indicate the wet and dry adiabatic 30 

temperature lapse rate (-0.4 and -0.98°C/100m). Red Dots dashed line shows the Environmental Lapse Rate of -

0.65°/100m. 
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Figure 5. Violin plot of the residual’s distributions related to the maximum minimum and mean temperature obtained 

by the pooling of the 10 stations within the calibration period. Statistical indexes of these distributions are reported in 35 

the  

Table 3. 
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  40 

 
Figure 6. Panel left: Scatterplot between ensemble simulation and daily temperature observations. Panel rigth: 

Comparison between daily mean ensemble simulations and observations error bar. Graphs show the period 1961-

2022 about the Jungfraujoch target station. 

 45 
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Figure 7. Comparison of the mean annual temperature time series estimations at the Jungfraujoch from 1864. Colored 

lines represents the  different back-up station, with black dotted-line represents the observed time series at 

Jungfraujoch. 

  50 
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Figure 8. Errorbar of the annual maximum, mean, and minimum time series at the Jungfraujoch target site from 1864 

to 2022.With blue lines the “ensemble”, with red lines the observed time series. The green line shows the long-term 

series estimated by Imfeld et al. 2023. 55 
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Figure 9. Comparison between the ensemble mean daily temperature (blue line) and the results from Imfeld et al. 2023 60 

reconstruction (green line) within the period 1864-1932. Panel Left: Daily Errorbar. Panel Rigth: Scatterplot. 
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Supplementary material 

 

Tables 65 

T Max 

  1961-2022 1961-1990 1991-2022   

ST Name Elev. [m a.s.l.] No Data [%] Trend [°C\Y] P Value Trend [°C\Y] P Value Trend [°C\Y] P Value CP Year 

VIL 2140 0.0% 0.0454 6.54E-35 0.0363 9.85E-08 0.0488 4.61E-12 1988 

ZUG 2964 0.0% 0.0335 1.54E-25 0.0281 1.82E-04 0.0294 7.76E-08 1987 

SON 3109 0.0% 0.0406 6.82E-36 0.0299 1.47E-07 0.0442 4.14E-13 1988 

PAT 2251 0.0% 0.0261 9.33E-10 -0.0167 1.74E-01 0.0383 1.56E-09 1988 

KRE 2513 0.1% 0.0333 1.00E-25 0.0208 1.22E-04 0.0427 2.80E-09 1988 

RUD 2304 11.8% 0.0447 3.02E-36 0.0346 4.58E-08 0.0475 1.34E-12 1989 

GUE 2286 0.1% 0.0399 8.18E-27 0.0406 7.23E-06 0.0379 9.98E-09 1987 

GSB 2472 6.2% 0.0252 1.00E-18 0.0146 1.44E-02 0.0414 3.68E-10 2013 

SAE 2501 0.0% 0.0303 6.27E-23 0.0298 2.61E-05 0.0206 1.86E-04 1987 

WFJ 2691 16.3% 0.0190 2.74E-09 -0.0113 1.60E-01 0.0370 2.26E-08 2013 

JUN 3571 0.0% 0.0476 7.28E-30 0.0229 7.66E-04 0.0367 4.45E-10 1990 

          

T Mean 

  1961-2022 1961-1990 1991-2022   

ST Name Elev. [m a.s.l.] No Data [%] Trend [°C\Y] P Value Trend [°C\Y] P Value Trend [°C\Y] P Value CP Year 

VIL 2140 0.0% 0.0407 3.29E-35 0.0290 9.86E-07 0.0381 3.34E-12 1988 

ZUG 2964 0.0% 0.0297 3.37E-23 0.0112 5.23E-02 0.0371 2.18E-10 1988 

SON 3109 0.0% 0.0399 1.29E-39 0.0346 8.74E-11 0.0434 1.72E-13 1988 

PAT 2251 0.0% 0.0263 1.35E-11 -0.0107 3.19E-01 0.0348 2.36E-09 1988 

KRE 2513 0.2% 0.0351 2.42E-30 0.0245 2.32E-05 0.0370 2.32E-10 1988 

RUD 2304 11.8% 0.0360 1.70E-33 0.0266 1.19E-06 0.0389 6.31E-12 1988 

GUE 2286 0.1% 0.0398 7.39E-31 0.0333 5.11E-06 0.0402 1.10E-10 1987 

GSB 2472 0.0% 0.0263 4.14E-22 0.0264 2.22E-05 0.0383 4.51E-10 2013 

SAE 2501 0.0% 0.0369 5.91E-27 0.0372 2.68E-06 0.0256 2.40E-06 1987 

WFJ 2691 0.1% 0.0328 3.08E-24 0.0151 1.51E-02 0.0354 9.13E-09 1988 

JUN 3571 0.0% 0.0376 2.26E-28 0.0254 3.09E-04 0.0368 4.79E-10 1988 

          

T Min 

  1961-2022 1961-1990 1991-2022   

ST Name Elev. [m a.s.l.] No Data [%] Trend [°C\Y] P Value Trend [°C\Y] P Value Trend [°C\Y] P Value CP Year 

VIL 2140 0.0% 0.0357 8.90E-32 0.0216 6.65E-05 0.0273 4.93E-11 1989 

ZUG 2964 0.0% 0.0238 3.40E-17 -0.0023 6.81E-01 0.0339 2.93E-10 1990 

SON 3109 0.0% 0.0391 4.34E-40 0.0390 8.94E-13 0.0424 5.11E-13 1988 
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PAT 2251 0.0% 0.0263 1.16E-13 -0.0045 6.29E-01 0.0313 5.44E-09 1988 

KRE 2513 0.3% 0.0381 7.16E-33 0.0258 1.78E-05 0.0366 5.44E-12 1987 

RUD 2304 11.8% 0.0277 1.28E-27 0.0196 2.30E-04 0.0302 2.97E-10 1988 

GUE 2286 0.1% 0.0382 6.74E-29 0.0259 3.20E-04 0.0396 2.18E-11 1987 

GSB 2472 0.1% 0.0208 3.90E-13 0.0206 1.40E-02 0.0359 1.26E-09 2013 

SAE 2501 0.0% 0.0389 3.60E-32 0.0417 2.50E-09 0.0282 1.10E-07 1987 

WFJ 2691 16.3% 0.0217 3.54E-10 -0.0214 7.24E-03 0.0342 2.10E-08 1989 

JUN 3571 0.0% 0.0345 3.82E-29 0.0287 6.80E-06 0.0365 1.40E-09 1987 

 

Table S1. Preliminary Analysis of the observed time series: Trend of the 5 years moving average of the Yearly 

minimum, mean and maximum temperature within the period 1961-2022,1961-1990 and 1991-2022 and the p 

values of the hypothesis test of linear model against a constat model. The last column shows the detection of the 

changing point. 70 
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TLR [°C/Km] OPTIMAL VALUES WITHIN CALIBRATION PERIOD 1980-1999 

  

T Max 

J F M A M J J A S O N D 

GSB -0.0051 -0.0053 -0.0059 -0.0060 -0.0061 -0.0072 -0.0081 -0.0081 -0.0071 -0.0057 -0.0051 -0.0051 

GUE -0.0053 -0.0054 -0.0057 -0.0056 -0.0060 -0.0070 -0.0078 -0.0080 -0.0075 -0.0067 -0.0056 -0.0053 

KRE -0.0056 -0.0052 -0.0057 -0.0059 -0.0056 -0.0062 -0.0065 -0.0066 -0.0063 -0.0060 -0.0056 -0.0051 

PAT -0.0052 -0.0050 -0.0057 -0.0058 -0.0063 -0.0069 -0.0071 -0.0071 -0.0065 -0.0059 -0.0051 -0.0047 

RUD -0.0051 -0.0050 -0.0058 -0.0062 -0.0063 -0.0063 -0.0065 -0.0066 -0.0063 -0.0059 -0.0050 -0.0046 

SAE -0.0058 -0.0056 -0.0058 -0.0058 -0.0058 -0.0056 -0.0058 -0.0060 -0.0060 -0.0062 -0.0056 -0.0055 

SON -0.0018 -0.0017 -0.0030 -0.0051 -0.0050 -0.0057 -0.0057 -0.0055 -0.0042 -0.0034 -0.0027 -0.0011 

VIL -0.0047 -0.0047 -0.0054 -0.0059 -0.0060 -0.0067 -0.0066 -0.0065 -0.0059 -0.0053 -0.0048 -0.0044 

WFJ -0.0055 -0.0053 -0.0056 -0.0058 -0.0063 -0.0067 -0.0080 -0.0084 -0.0077 -0.0072 -0.0056 -0.0052 

ZUG -0.0043 -0.0042 -0.0047 -0.0060 -0.0063 -0.0058 -0.0056 -0.0059 -0.0055 -0.0056 -0.0043 -0.0039 

                          

  

T Mean 

J F M A M J J A S O N D 

GSB -0.0053 -0.0056 -0.0061 -0.0063 -0.0062 -0.0069 -0.0074 -0.0074 -0.0066 -0.0057 -0.0053 -0.0052 

GUE -0.0055 -0.0055 -0.0059 -0.0059 -0.0059 -0.0063 -0.0066 -0.0066 -0.0062 -0.0058 -0.0055 -0.0054 

KRE -0.0056 -0.0051 -0.0057 -0.0060 -0.0059 -0.0064 -0.0063 -0.0064 -0.0061 -0.0058 -0.0054 -0.0051 

PAT -0.0054 -0.0052 -0.0059 -0.0061 -0.0064 -0.0066 -0.0067 -0.0068 -0.0063 -0.0058 -0.0052 -0.0049 

RUD -0.0051 -0.0049 -0.0057 -0.0061 -0.0062 -0.0062 -0.0062 -0.0064 -0.0061 -0.0057 -0.0049 -0.0046 

SAE -0.0059 -0.0056 -0.0059 -0.0060 -0.0060 -0.0058 -0.0058 -0.0059 -0.0058 -0.0059 -0.0056 -0.0054 

SON -0.0031 -0.0027 -0.0042 -0.0060 -0.0061 -0.0065 -0.0062 -0.0061 -0.0051 -0.0043 -0.0037 -0.0022 

VIL -0.0050 -0.0049 -0.0057 -0.0062 -0.0063 -0.0067 -0.0065 -0.0065 -0.0060 -0.0054 -0.0051 -0.0047 

WFJ -0.0057 -0.0054 -0.0058 -0.0059 -0.0062 -0.0062 -0.0065 -0.0067 -0.0063 -0.0061 -0.0055 -0.0053 

ZUG -0.0045 -0.0040 -0.0046 -0.0053 -0.0056 -0.0053 -0.0049 -0.0051 -0.0049 -0.0050 -0.0041 -0.0038 

                          

  

T Min 

J F M A M J J A S O N D 

GSB -0.0055 -0.0057 -0.0061 -0.0063 -0.0062 -0.0066 -0.0066 -0.0068 -0.0063 -0.0058 -0.0056 -0.0054 

GUE -0.0055 -0.0055 -0.0059 -0.0059 -0.0058 -0.0059 -0.0059 -0.0059 -0.0058 -0.0056 -0.0054 -0.0054 

KRE -0.0056 -0.0053 -0.0059 -0.0061 -0.0062 -0.0066 -0.0062 -0.0063 -0.0061 -0.0058 -0.0057 -0.0052 

PAT -0.0056 -0.0054 -0.0060 -0.0061 -0.0062 -0.0062 -0.0061 -0.0062 -0.0059 -0.0057 -0.0054 -0.0052 

RUD -0.0049 -0.0047 -0.0055 -0.0058 -0.0059 -0.0058 -0.0056 -0.0059 -0.0057 -0.0055 -0.0050 -0.0047 

SAE -0.0060 -0.0058 -0.0061 -0.0061 -0.0062 -0.0059 -0.0058 -0.0058 -0.0058 -0.0060 -0.0057 -0.0056 

SON -0.0043 -0.0037 -0.0051 -0.0063 -0.0064 -0.0068 -0.0060 -0.0058 -0.0057 -0.0054 -0.0048 -0.0035 

VIL -0.0053 -0.0052 -0.0058 -0.0062 -0.0062 -0.0065 -0.0062 -0.0062 -0.0060 -0.0055 -0.0053 -0.0050 

WFJ -0.0058 -0.0055 -0.0058 -0.0060 -0.0061 -0.0061 -0.0059 -0.0060 -0.0060 -0.0060 -0.0056 -0.0054 

ZUG -0.0047 -0.0043 -0.0048 -0.0053 -0.0055 -0.0053 -0.0048 -0.0049 -0.0049 -0.0050 -0.0045 -0.0040 

Table S2. Optimal values of the TLR parameters within the period 1980-99, about all the 10 back-up stations, 

for each month and the three considered variables. 
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RESIDUALS STATISTICAL DISTRIBUTIONS (1980-1999 All Stations) 

Var ST. ID J F M A M J J A S O N D 

T Max 

GSB Stable Gev Stable Gev T Loc Stable Gev Gev T Loc Stable Gev Stable 

GUE Gev Gev Stable Stable T Loc T Loc Stable Gev Gev Stable T Loc Stable 

KRE Stable Gev Gev T Loc Gev Stable Stable Gev T Loc Gev Stable Stable 

PAT Stable Gev Gev Gev Gev T Loc Gev Stable Stable Gev Gev Stable 

RUD T Loc Gev Gev Gev Stable Stable Stable Gev Stable Gev Gev Gev 

SAE Norm T Loc Stable Stable T Loc T Loc T Loc T Loc T Loc T Loc T Loc T Loc 

SON Stable Gev T Loc Gev Stable T Loc Gev Stable Stable T Loc T Loc Stable 

VIL Stable Gev T Loc T Loc T Loc Stable Stable Gev Stable Gev Gev Gev 

WFJ T Loc Gev Stable Stable Stable T Loc Stable Stable Stable T Loc T Loc T Loc 

ZUG T Loc Stable Stable T Loc T Loc T Loc T Loc Gev T Loc Norm Stable T Loc 

Prev. Stable Gev Stable Gev T Loc T Loc Stable Gev Stable Gev 

Gev/T 

Loc Stable 

Var ST. ID J F M A M J J A S O N D 

T Mean 

GSB Gev Gev Stable Stable T Loc Norm T Loc Norm T Loc Stable Stable Stable 

GUE Gev Gev Stable Stable Stable T Loc Stable Gev Stable Stable Gev Gev 

KRE Gev Stable Gev Stable Stable T Loc Gev Stable Stable Stable Stable Stable 

PAT Stable Gev Gev Gev Stable Stable Stable Stable Stable Gev Gev Stable 

RUD Stable Gev Gev Gev T Loc Stable T Loc Gev Stable Gev Gev Stable 

SAE T Loc T Loc Gev Stable T Loc T Loc T Loc T Loc T Loc T Loc T Loc T Loc 

SON Stable Gev Gev Gev Stable Stable Gev Stable Gev Gev Gev Stable 

VIL Gev Gev Gev Gev T Loc T Loc Gev Stable Gev Gev Gev Stable 

WFJ Stable Stable Gev Stable Stable Stable T Loc Stable T Loc T Loc Stable Stable 

ZUG T Loc T Loc Stable Stable T Loc T Loc T Loc Stable T Loc Stable T Loc T Loc 

Prev. Gev Gev Gev Stable 

Stable/T 

Loc T Loc T Loc Stable 

Stable/T 

Loc 

Stable/G

ev Gev Stable 

Var ST. ID J F M A M J J A S O N D 

T Min 

GSB Norm Stable Stable Stable T Loc T Loc Stable Stable T Loc T Loc Gev T Loc 

GUE Gev Gev Gev Gev Stable T Loc T Loc Stable T Loc Gev Gev Gev 

KRE Gev Gev Stable Stable T Loc T Loc Gev T Loc Stable Gev Stable Stable 

PAT Stable Gev Gev Stable Stable T Loc Stable T Loc Stable Gev Gev Stable 

RUD Stable Gev Gev Stable Stable T Loc Gev T Loc Stable Stable Stable Stable 

SAE Gev Stable Gev Gev Stable T Loc T Loc T Loc T Loc Stable Gev Stable 

SON Gev Gev Gev Stable Stable T Loc Stable Stable Stable Stable Stable Stable 

VIL Stable Gev Stable T Loc T Loc T Loc Gev T Loc Stable Gev Gev Stable 

WFJ Gev Stable Gev Stable Stable T Loc Stable T Loc T Loc Stable Gev Gev 

ZUG Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

Prev. Gev Gev Gev Stable Stable T Loc Stable T Loc 

T 

Loc/Stable Stable Gev Stable 

Table S3. Statistical Distributions of the residuals for each station for each month. The selection was based on 

the minimum values of the statistical tests of Kolmogorov Smirnov and Anderson Darling tests. On the last row 75 

for each variable the prevailing distribution was selected for each month. 
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T Max – RMSE [°C]  T Max - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 3.082 3.274 3.319  VIL 0.883 0.870 0.875 

ZUG 2.408 2.730 2.585  ZUG 0.932 0.914 0.931 

SON 2.839 3.121 3.162  SON 0.899 0.880 0.885 

PAT 2.855 2.958 3.051  PAT 0.908 0.899 0.903 

GUE 2.325 2.410 2.407  GUE 0.935 0.935 0.940 

GSB 2.223 2.256 2.409  GSB 0.943 0.939 0.940 

SAE 2.240 2.332 2.392  SAE 0.945 0.937 0.943 

WFJ 2.189 2.421 2.425  WFJ 0.939 0.933 0.941 

KRE 3.078 3.317 3.424  KRE 0.890 0.875 0.879 

RUD 3.108 3.197 3.195  RUD 0.895 0.880 0.889 

Max 3.108 3.317 3.424  Max 0.945 0.939 0.943 

Min 2.189 2.256 2.392  Min 0.883 0.870 0.875 

         

T Mean - RMSE [°C]  T Mean - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 2.995 2.946 2.899  VIL 0.894 0.897 0.903 

ZUG 1.841 1.886 1.999  ZUG 0.961 0.959 0.956 

SON 2.785 2.807 2.782  SON 0.909 0.906 0.910 

PAT 2.521 2.489 2.520  PAT 0.926 0.929 0.931 

GUE 1.773 1.561 1.556  GUE 0.964 0.971 0.973 

GSB 1.958 1.686 1.680  GSB 0.956 0.966 0.969 

SAE 1.751 1.714 1.699  SAE 0.966 0.966 0.968 

WFJ 1.630 1.596 1.621  WFJ 0.972 0.972 0.973 

KRE 2.730 2.746 2.765  KRE 0.919 0.921 0.924 

RUD 2.883 2.756 2.735  RUD 0.907 0.913 0.918 

Max 2.995 2.946 2.899  Max 0.972 0.972 0.973 

Min 1.630 1.561 1.556  Min 0.894 0.897 0.903 

         

T Min - RMSE [°C]  T Min - rP 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 3.055 3.296 3.209  VIL 0.900 0.884 0.891 

ZUG 2.133 2.551 2.422  ZUG 0.953 0.938 0.947 

SON 2.760 3.127 3.075  SON 0.922 0.896 0.900 

PAT 2.448 2.766 2.754  PAT 0.937 0.921 0.924 

GUE 2.055 1.794 1.721  GUE 0.955 0.964 0.968 

GSB 2.143 1.877 1.777  GSB 0.952 0.961 0.967 

SAE 2.032 1.887 1.867  SAE 0.959 0.962 0.964 

WFJ 1.890 1.821 1.783  WFJ 0.960 0.966 0.968 

KRE 3.031 3.249 3.226  KRE 0.905 0.890 0.893 
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RUD 2.900 3.179 3.099  RUD 0.913 0.898 0.906 

Max 3.055 3.296 3.226  Max 0.960 0.966 0.968 

Min 1.890 1.794 1.721  Min 0.900 0.884 0.891 

 

T Max - ρSp  T Max - τk 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 0.894 0.884 0.884  VIL 0.716 0.698 0.700 

ZUG 0.935 0.917 0.933  ZUG 0.782 0.750 0.777 

SON 0.908 0.892 0.897  SON 0.736 0.713 0.719 

PAT 0.913 0.906 0.908  PAT 0.744 0.733 0.736 

GUE 0.935 0.938 0.942  GUE 0.782 0.784 0.793 

GSB 0.944 0.940 0.941  GSB 0.795 0.790 0.791 

SAE 0.950 0.939 0.946  SAE 0.806 0.787 0.800 

WFJ 0.941 0.937 0.945  WFJ 0.791 0.784 0.798 

KRE 0.900 0.888 0.889  KRE 0.725 0.706 0.707 

RUD 0.902 0.884 0.893  RUD 0.729 0.704 0.716 

Max 0.950 0.940 0.946  Max 0.806 0.790 0.800 

Min 0.894 0.884 0.884  Min 0.716 0.698 0.700 

         

T Mean - ρSp  T Mean - τk 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 0.905 0.911 0.913  VIL 0.731 0.736 0.741 

ZUG 0.962 0.961 0.958  ZUG 0.835 0.833 0.824 

SON 0.915 0.914 0.919  SON 0.747 0.745 0.751 

PAT 0.934 0.937 0.937  PAT 0.777 0.782 0.783 

GUE 0.969 0.974 0.976  GUE 0.850 0.863 0.868 

GSB 0.960 0.968 0.972  GSB 0.828 0.850 0.858 

SAE 0.970 0.968 0.971  SAE 0.851 0.848 0.855 

WFJ 0.975 0.975 0.977  WFJ 0.866 0.867 0.870 

KRE 0.926 0.930 0.931  KRE 0.768 0.774 0.774 

RUD 0.915 0.921 0.926  RUD 0.746 0.755 0.763 

Max 0.975 0.975 0.977  Max 0.866 0.867 0.870 

Min 0.905 0.911 0.913  Min 0.731 0.736 0.741 

         

T Min - ρSp  T Min - τk 

STATION 1961-1979 1980-1999 2000-2022  STATION 1961-1979 1980-1999 2000-2022 

VIL 0.909 0.897 0.901  VIL 0.741 0.719 0.726 

ZUG 0.953 0.939 0.948  ZUG 0.818 0.793 0.807 

SON 0.925 0.901 0.906  SON 0.769 0.729 0.735 
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PAT 0.943 0.930 0.932  PAT 0.796 0.772 0.777 

GUE 0.960 0.967 0.971  GUE 0.828 0.845 0.856 

GSB 0.955 0.963 0.970  GSB 0.819 0.838 0.854 

SAE 0.962 0.963 0.966  SAE 0.834 0.838 0.843 

WFJ 0.962 0.967 0.971  WFJ 0.839 0.850 0.857 

KRE 0.911 0.900 0.902  KRE 0.745 0.725 0.728 

RUD 0.919 0.908 0.915  RUD 0.758 0.738 0.750 

Max 0.962 0.967 0.971  Max 0.839 0.850 0.857 

Min 0.909 0.897 0.901  Min 0.741 0.719 0.726 

 

Ensamble Performances 

  RMSE [°C]  rP ρSp τk 

T Max 2.247 0.946 0.941 0.800 

T Mean  1.852 0.965 0.961 0.840 

T Min 2.142 0.956 0.952 0.822 

 

Table S4. Model's performances evaluation within the calibration period 1980-99 and the validation periods 80 

(1961-79 and 2000-2022). RMSE, Pearson correlation coefficient, Rank based Spearman and Kendall 

coefficients were reported about the 10 backup stations and for the ensemble simulation. 
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Figures 100 
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                     105 

 

Figure S1. Trend Analysis of the mean yearly annual temperature observed time series. Blue lines indicate 

annual mean, black dot lines the 5 years moving average, the red lines the 1961-2022 trend, the dashed red lines 

the 1961-1990 and 1991-2022 trends. Red dots show the year of the change point detection. 



 

24 
 

 110 

Figure S2. Trend Analysis of the mean annual temperature observed time series: comparison among the 

different stations for minimum, mean and maximum temperature within the period 1961-2022. 
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Figure S3. Trend Analysis of the mean annual temperature observed time series against the meteorological 115 

stations elevation within the period 1961-2022. 
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 120 

 

Figure S4. TLR comparison among 10 back-up stations related to the calibration period 1980-1999. 
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Figure S5. TLR Annual variability within the period 1961-2022 considering all the 10 back-up stations, and all 125 

of the 12 months (within each year and each month and related to each station the optimal value of TLR is that 

minimized the sum of squared errors). 
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