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4. DIscussion

4.1 Common periodicities

The periodicities identified in the mean sea level records (Fig. 5-7) represent the temporal
frequencies of sea-level oscillations.

3. Periodicities

3.1 Global mean sea-level variability

Fig. 5 shows periodicities identified in each IMF, for each tide gauge shown in Fig. 1.
Concatenating periods for all 121 tide gauges displays the global distribution of periodicities.

1. Motivation

Internal climate variability causes an increase or decrease in both global and regional sea level. On
short timescales, this variability can temporarily amplify or reduce long-term sea-level change 1. On
longer timescales, although the effect of anthropogenic forcing on sea-level change is without
guestion, the nature of multi-decadal sea-level oscillations are less understood (2!
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4.2 Possible causal factors

On decadal and multi-decadal timescales, sea-level changes may be attributed to distinct
modes of internal oceanic and atmospheric variability (Fig. 8).
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Fig. 5: Histogram (blue bars), and KDE (red line) for all periodicities, for all 121 tide
gauges. KDE normalised based on the number of occurrences of each period value.

3.2 Regional mean sea-level variability
Tide gauges initially divided by region, into northern hemisphere (NH) (Fig. 6a), and southern
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Atmosphere-driven sea-level variability Whalen et al. (2020).

* Lower periodicities of 2 to 8-years (table
1-2) align with the periodicity of the El
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Fig. 6: Histogram (blue bars) and KDE (red line) for periodicities for (a) Northern Hemisphere, (b) Southern Hemisphere. KDE normalised based on
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5. Summary
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Using dominant periodicities from Fig. 5, common periodicities across basins identified in table 2.
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Fig. 7: Histogram (blue bars) and KDE (red line) of all periodicities for: (a) North Atlantic, (b) North Pacific, (c) South Atlantic, (d) South Pacific,
(e) Indian Ocean. KDE normalised by count of each periodicity value.
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Turnmg pomts I IMFS’ an_d the,",‘ Fig. 2: Intrinsic mode functions (IMFs) forYISra(;st, produced using EMD.
corresponding annual values identified
for each tide gauge (Fig. 3). Time 5
Interval between consecutive turning
points (years) calculated, and multiplied
by 2 to capture the entire wave period.
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5.1 What next?

* Use of high-resolution proxy-based sea level reconstructions.
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* To extend the spatial coverage of sea-level records. There is spatial bias when using
the PSMSL database (Fig. 1) as most suitable records are located in the NH (96%),
and the NA basin (77%).

* To test the feasibility of using EMD as a method to identify oscillations in different sea-
level timeseries records.
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Fig. 4: Distribution of periodicities from each IMF, for Brest. Table 2: Periodicities (years) identified for each ocean basin (see Fig. 7). Checks show where similar periods have been identified in multiple basins.  JeitERie Gl al, (00 Cegpnmieel Reasalen Leiss, SelE). candidate Presentation contest



	Slide 1

