Differential arrival times for source location with DAS arrays: tests on data selection and automatic weighting procedure

Emanuele Bozzi¹ (Speaker) N. Piana Agostinetti¹, G. Saccorotti², A. Fichtner³, Lars Gebraad^{3,4}, Tjeerd Kiers³, and Takeshi Nishimura⁵

¹ University of Milano Bicocca, Environmental and Earth Sciences Department

(DISAT), Milan, Italy (<u>e.bozzi3@campus.unimib.it</u>)

² Istituto Nazionale di Geofisica e Vulcanologia (INGV), Pisa, Italy

³ ETH Zürich, Department of Earth Sciences, Institute of Geophysics, Zürich,

Switzerland

⁴ Mondaic AG, Zürich, Switzerland

⁵ Tohoku University, Department of Geophysics, Tohoku, Japan

Vienna, EGU General Assembly, April 17, 2024. SM 3.1 session

EDIS

Outline

Information redundancy with DAS Differential Arrival Times (DATs) for event location Weighting DATs (Hierarchical McMC)

Synthetic tests

Applications to real data

Differential arrival times for event location

- Spatial variability of DAS waveforms + huge number of available DAS channel couples (no manual check)
- Inverting all DATs/assigning equal weight may lead to poor event location accuracy

The goal >> Test DATs selection or differential weighting in the inversion process

(First test) Selecting P-DATs

Selected P-DATs (Maximum value of the Cross-Correlation (MCC) function and interchannel Distance (INTER-DIST)) >> better constrain on event location directionality (NW), compared to absolute arrival times.

This gave us an idea for P-DATs weighting ...

(Second test) Weighting P-DATs

 MCC and INTER-DIST seem good candidates for weighting differently the time delays.

KG

- We adopted a similar procedure described in Piana Agostinetti et al., 2023 (hierarchical McMC)
- Weighting entries in the covariance matrix in the inversion scheme

From INTER-

DIST

$$\mathbf{C}_{\mathbf{e}}(\mathbf{m}) = \mathbf{W}^{-1}(\mathbf{m}) \, \mathbf{C}_{\mathbf{e}}^* \, \mathbf{W}^{-1}(\mathbf{m})$$

From MCC

Noise models: hc(m), hd(m) and h0(m)

KG

 $W^{-1}(m) = 10^{**} (hc(m) + hd(m) + h0(m))$

H(1), H(2), H(3), H(4), H(5), H(6) and H(7) are hyperparameters sampled within a Markov Chain Monte Carlo approach, together with model parameters (event easting, northing, depth).

Weighting P-DATs

KG

 An example (e.g., a sampled model in the McMC): H(1) = 0.2 (Lower weight MCC) H(2) = 0.55 (Thr. MCC) H(3) = 0.5 (Upper weight MCC) H(4) = 0.2 (Lower weight INTER-DIST) H(5) = 15 m (Thr. INTER-DIST) H(6) = 0.5 (Upper weight INTER-DIST) H(7) = 0.2 (Coherent error scaling) 	Channel	MCC	INTER- DIST	hc(m) + hd(m)	h0(m)	"More important"
	pairs 1 <> 2	0.9	10	0.9	0.5	"Less Important"
	1 <> 3	0.6	20	1.5	0.5	
	1 <> 4	0.3	30 =	1.5	0.5	*Ce
	2 <> 3	0.4	10	1.2	0.5	
	2 <> 4	0.7	20	1.2	0.5	
	3 <> 4	0.9	10	0.9	0.5	
Total weight for each phase (da delay) W⁻¹(m) = 10** (hc(m) +	ita point, time hd(m) + h0(e m))	1			4
From MCC From INTER- C	Coherent erro	or scaling	2		3	

Synthetic tests

Depth [m]

-1000

Hyper3: Upper weight MCC

Ó

700

600

500

400

300

200

100

2000-2000

3500

3000

2500

2000

1500

1000

500

0.75 1.00 -1.0

H3

-0.5

0.0

0.5

1.0

Ζ

Synthetic tests

Model parameters + H2,H3,H5,H6,H7 (thresholds MCC, **INTER-DIST, upper weights and H7)**

Synthetic tests

Model parameters + All hyperparameters

Total weight for each phase (data point, time delay) W⁻¹(m) = 10** (hc(m) + hd(m) + h0(m)) From MCC From INTER- Coherent error scaling DIST

- Likely there is a trade-off between the hyperparameter weights.
- MCC and INTER-DIST thresholds are correctly recovered.

Hyperparameters

Application to real data: Azuma-Volcano and Cuolm da Vi

Tectonic-volcanic event (Azuma-Volcano, Japan) Active blast on a landslide (Cuolm da Vi, Switzerland)

• TEST-1 : Not-weighting

- **TEST-2**: **Manual weighting** (hyperparameters are fixed)
- TEST-3: Automatic weighting (only MCC or INTER-DIST)
- TEST-4: Automatic weighting (MCC + INTER-DIST + H7)

Azuma-Volcano

TEST-1 (NO WEIGHT)

All the solutions are far from the reference location. Nevertheless the azimuth is correctly estimated.

TEST-2 (MANUAL WEIGHT)

H(2) = 0.5 (Thr. MCC) H(3) = 2 (Upper weight) H(4) = 0.2 (Lower weight) H(5) = 200 (Thr. INTER-DIST) H(6) = 2 (Upper weight)

TEST-3 (ONLY MCC)

H(2) mean PPD = 0.86 H(3) mean PPD = 1.56

(plausible values)

Azuma-Volcano

H(4) mean PPD = 1 H(5) mean PPD = 100.1 m H(6) mean PPD = 1.6

(plausible values)

(plausible values)

Cuolm-Da-Vi

400

Northing [m]

TEST-1 (NO WEIGHT)

All the solutions are far from the reference location

0.004 200 solutions of the 0 Density . -200 0.001 -400-400-200 200 400 0 Easting [m] H(1) = 0.2 (Lower weight) H(2) = 0.7 (Thr. MCC) H(3) = 1 (Upper weight) H(4) = 0.2 (Lower weight) H(5) = 50 m (Thr. INTER-DIST)H(6) = 1 (Upper weight)

TEST-2 (MANUAL WEIGHT)

🛨 Ground truth

DAS array section

CUOLM-DA-VI

EXPERT OPINION

TEST-3 (ONLY MCC)

Cuolm-Da-Vi

400

200

-400

-200

TEST-3 (ONLY INTER-DIST)

TEST-4 (H2,H3,H5,H6,H7) CUOLM-DA-VI

(H2,H3,H5,H6,H7))

*

🛨 Ground truth

DAS array section

- 0.020

- 0.015 - DAS channels

0.005

H(2) mean PPD = 0.77 H(3) mean PPD = 1.03 H(5) mean PPD = 330 m H(6) mean PPD = 0.91

0

Easting [m]

200

400

Automatic weighting procedure

The results suggest that the real data space might not strictly adhere to the basic assumptions of the algorithm (higher crosscorrelation index + lower interchannel distance indicate better data points).

(plausible values)

Conclusions

- What we did? We tested DATs selection and developed a hierarchical McMC to weight the covariance matrix for event location with differential arrival times.
- **Does it work on synthetic tests?** The algorithm recovers the true values of the thresholds hyperparameters (MCC and INTER-DIST), but not more than two weights together (likely trade-off).
- **Does it work on "real-world" data?** The algorithm weights real data recovering the reference locations (manual weight). However, automatically weighed solutions are not comparable to the reference solutions.
- **Possible explanations?** Not efficient noise models (thresholds + weights) + real data space not respecting our prior assumptions (highr MCC and lower INTER-DIST >> better data point)
- **Possible solutions?** A different formulation of the noise models is likely needed to avoid a trade-off between the hyperparameters + other real data test cases.

Differential arrival times for source location with DAS arrays: tests on data selection and automatic weighting procedure

Emanuele Bozzi¹ (Speaker) N. Piana Agostinetti¹, G. Saccorotti², A. Fichtner³, Lars Gebraad^{3,4}, Tjeerd Kiers³, and Takeshi Nishimura⁵

Thanks for your attention!

Vienna, EGU General Assembly, April 17, 2024. SM 3.1 session

