Evaluation of seagrass as a nature based solution for coastal protection in the German Wadden Sea

Benjamin Jacob, Joanna Staneva, Tobias Dolch, Andreas Wurpts

EGU24

Motivation

- Changing extreme weather statistics and global SLR enhance the risk for coastal hazards (land loss, flooding, salt intrusions) and hence the need for coastal protection
- Traditional engineering methods (Dikes, breakwaters, etc.) albeit efficient are costly and represent a strong interference with the system
- Meanwhile Nature based Solutions (NbS) have become increasingly popular as alternative or supplementation
 - using natural elements:
 - Sand nourishments
 - Mussel beds
 - Flood plains
 - Coastal Vegetation
 - Interacting with hydro-morphodynamics, effectively attenuating:
 - Short term waves events
 - And currents

Source: Ariana E. Sutton-Grier et al. (2015) Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems, Environmental Science & Policy (51) (modified)

Motivation

- The German Bight study area
 - Is a high energetic system (tides, wind waves)
 - Contains the valuable Wadden Sea ecosystem,
 - economically important infra structure and large coastal population
 - Is frequently impacted by extreme weather events and traditional coastal protection is a crucial topic for the area
- Coastal sea grass vegetation is sensitive (eutrophication/light/stress)
 - decline in the 1970s
 - rehabilitation at least for NFWS while remaining sparse in EFWS
- However existing literature provides restoration strategies improving patch survival rates under higher energetic conditions (large patch transferal)

Objective:

- By how much could seagrass expansion reduce water levels, current velocities, wave heights and the mobilization of sediments?
- How do the NFWS and EFWS compare in terms of NBS response?

Seagrass Data

- North Frisian Wadden Sea (NFWS): expansion and becoming denser
- East Frisian Wadden Sea (EFWS): only small beds with low shoot densities are found
- Data/sampling (NFWS: T. Dolch (AWI), EFWS: NLWKN) by foot to estimate Summer Sea Gras Coverage (plant coverage of meadows, area percentage of meadows to reference area)
- Data was mapped, georeferenced and extrapolated using GIStechniques and finally binned in 20% coverage intervals

Depth range of Zostera occurrence -4 to 4 m

Observed physiology

leaf heightthickness19 cm1.99m

9.8 cm 0.8mm

Areal coverage	Density (for model)	
areal coverage [%]	Sprouts [1/m2]	
5-19.9	450	
20 - 39.9	1130	
40 59.9	1530	
60 - 79.9	3540	
80 - 100	7360	

Model

SCHISM

- 3D, RANS-Equations on unstructured grids
- Robust matrix solver following an efficient semi-implicit time stepping schemes
- Includes Higher-order transport solver: TVD²
- Includes a variety of functional modules

WWM -III

• Wave Action balance Equation on an unstructured mesh.

German Bight ugrid downscaling configuration

- 3rd generation wave model
- ST4 physics Ardhuin et al. (2010)

Elements/Nodes 900000/480000 1.5 km - 50 m dx 21 vertical S-layers 90s dt

- SED3D
 - 3D Sediment model for non-cohesive sediments
 - Based on Community Sediment Transport Model (Warner et al., 2008).
 - unstructured grid adaption (Pinto et al. (2012)
 - Erosion/deposition/bedload of 8 Sediment Classes (0.06-2 mm)

Model - Vegetation

10 approximation as time constant rigid cylinders

- acting as form drag element in momentum 1. equation
- 2. Source of turbulent kinetic energy

1. Momentum:

$$\frac{D\boldsymbol{u}}{dt} = \mathbf{f} - g\nabla\eta + \boldsymbol{m}_{\mathbf{z}} - \alpha |\boldsymbol{u}| \boldsymbol{u} L(x, y, z),$$

$$\mathbf{f} = f(v, -u) - \frac{g}{\rho_0} \int_z^{\eta} \nabla \rho d\zeta - \frac{\nabla p_A}{\rho_0} + \alpha g \nabla \Psi + \mathbf{F}_m + other \quad \text{(Explicitly treated terms)}$$

Vegetation density:

 $\alpha(x, y) = D_v N_v C_{Dv}/2$:= diameter x density x drag coeff.

 $H^{\alpha}=h+zv$

Verticality:

$$L(x, y, z) = \begin{cases} \mathcal{H}(z_v - z), & 3D\\ 1, & 2D \end{cases}$$

 $\mathscr{H}(x) =$

Scenarios

2. TKE/Mixing length

$$\begin{split} \frac{Dk}{Dt} &= \frac{\partial}{\partial z} \left(\nu_k^{\psi} \frac{\partial k}{\partial z} \right) + \nu M^2 + \kappa N^2 - \epsilon + c_{fk} \alpha |\boldsymbol{u}|^3 \mathscr{H}(z_v - z) \\ \frac{D\psi}{Dt} &= \frac{\partial}{\partial z} \left(v_{\psi} \frac{\partial \psi}{\partial z} \right) \\ &+ \frac{\psi}{k} \Big[c_{\psi 1} \nu M^2 + c_{\psi 3} \kappa N^2 - c_{\psi 2} \epsilon F_{wall} + c_{f\psi} \alpha |\boldsymbol{u}|^3 \mathscr{H}(z_v - z) \Big] \end{split}$$

Sea Grass Scenarios

- **Ref**erence: the present day maximum summer extend/density (data 2019)
- Blank: Control experiment without any sea grass
- Veg_{max}: hypothetical (unrealistic) extreme of fully covered intertidals and maximum dense meadows
- Veg_{HE}: restoration of deepest 10% of Veg_{max}-coverage area: i.e. populating the high energy regime near channels • Veg_{I F}: restoration of shallowest 10% of Veg_{max}-coverage area:
 - i.e. populating the **low energy** regime (shallows)
- 1Y simulation for (2017)

Nr	Name	Sea Grass Cover	Sediment model	Wave model
1	Reference	present day (data) coverage	Yes	Yes
2	Blank	None	Yes	Yes
3	Blank-no-Wave	None	Yes	No
4	Veg-Max	entire WS between -1 and 4 m	Yes	Yes
5	Veg-low-Energy	shallowest 10 % of Veg-Max	Yes	Yes
6	Veg-high-Energy	deepest 10% of Veg-Max	Yes	Yes

Table 2: Caption

8.1E

6000

• The presence of a seagrass meadow reduces currents by ~50% and bottom layer SPM ~30%.

 TKE increases above canopy layer (20 cm)

Groningen

Norden . Upga Sch Südbrookmerland Krummhörn Roodeschool **Uithuizermeeden** Emden GBaflo **OWinsum** Delfzijl Bedumo Delfsle Ten Boero Siddeburen

Results – Elevation

- Weak ssh response (mm-cm)
- Sparse vegetation increase average sea level locally
- Extremes are dampened
- Extensive seagrass meadows are needed to impact sea level

a)

Ref

Blank-Ref

Results – Significant Wave Height

- Seagrass in present day extent scenarios range between 20 to 40cm
- Reductions in HS can succeed 0.5m for seagrass recovery in the deep inter tidal.
- HS reduction reaches 20% in deeper intertidal and over 50% in regions deeper than 1m.

a)

6.6E

Results – Depth-averaged horizontal velocity

- Effective local attenuation of velocities
- associated bottom stress reduction widely succeeds 20-30% in deeper Wadden Sea area and above 80% in shallow regions.

6.6E

6.6E

6.6E

6.6E

6.6E

6.6E

Results – Sediment concentration

- Reduction in bottom concentrations in the order of a few cg/L - dg/L
- Locally reductions can reach > 1 g/L.
- Depending on depth the attenuation ranges between 20 and 90%.
- Seagrass is most effective in extensive shallow meadows.

a) Blank-Ref Ref 0.5 7.4E Veg_{max}-Ref ^{8.1E} 6.6E Veg_{HE}-Ref 8.1E 6.6E 6.6E 7.4E 8.1E -0.1 0.0 0.1 $\Delta mean(C_{totbtm}) [g/L]$ Blank-Ref 6.6E VegHE-Ref 8.1E 6.6E 7.4E 8.1E $^{-1}$

 $\Delta prc95(C_{totbtm})$ [g/L]

Conclusions

- The impact of expanded coastal vegetation was analyzed using a coupled model for the German Bight. Analysis of monthly average and 95th percentile demonstrated:
 - only a weak impact on sea surface elevation
 - strong attenuation of currents and waves (20-80%).
- Results for EFWS and the NFWS are fundamentally similar, as both systems are subject to similar physical conditions; the higher seagrass coverage in the NFWS already provides already some limited erosion protection.
- The reduction in bottom stress greatly reduced local sediment concentration, suggesting an effective coastal erosion protection:
- The potential of seagrass to support the vertical height growth of the Wadden Sea to maintain bathymetric control under future increases in sea level is seen as the major long-term contribution of seagrass to coastal protection.

Thank you for your attention!

We thankfully acknowledge the projects

REST-COAST and Coatal-risks.

Jacob, B., Dolch, T., Wurpts, A., Staneva, S. (2023, under revision). Evaluation of seagrass as a nature based solution for coastal protection in the German Wadden Sea. *Ocean Dynamics*

Benjamin.Jacob@hereon.de

Z. marina

. noltii