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USGS Stress Shadows: Insights into Physical Models of Aftershock Triggering
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Why do some aftershocks occur in stress shadows? Hypothesis 2: Aftershocks in the shadows occur on faults with different Hypothesis 3: Aftershocks in the shadows are triggered by another mechanism Hypothesis 3 continued: Aftershocks in the shadows are triggered by another
orientations than the model receiver faults, and these unexpected fault such as dynamic stress changes. mechanism such as dynamic stress changes.

Hypothesis 1: Aftershocks appear to be in shadows because orientations experience increased Coulomb stress.

of inaccu racy in the stress change calculations. Test 3.1: Are the spatial and temporal patterns of the aftershocks consistent with Test 3.2: Are the aftershocks in the shadows consistent with triggering by the
Test 2.1: Examine the variability of focal mechanisms of events in the shadows. dynamic triggering? modeled dynamic stress changes?

Hypothesis 2: Aftershocks in the shadows occur on faults with Are they different from the background events?

different orientations than the model receiver faults. and these Result 3.1: Aftershocks in shadows have spatial decay consistent with dynamic Result 3.2: No evidence that aftershocks in shadows occur in locations or on fault
J
unexpected fault orientations experience increased Coulomb Result 2.1: Mechanisms in the shadows are more diverse, and less consistent with triggering by near-field body waves. They occur in an initial burst during first few planes with larger than typical dynamic stress changes, or with consistent patterns
stress background stress, than background events and aftershocks in stress increase days consistent with a transient process like dynamic triggering. (Hardebeck & in the number of cycles, period, or duration of dynamic stresses.
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Figure 1. Aftershocks during the first 2 weeks following the (left) 2019 M7.1 Ridgecrest, California, and (right) 2016 M7.0 Kumamoto, Japan Y (a—c) Cumulative number of aftershocks in positive stress change regions (red solid curve) and a Coulomb Rate and State (CRS) model max ACS (MPa) : background FM number of cycles : background FM period (s) : background FM duration (s) : background FM
earthquakes. Events are color-coded by the probability that they occur in a stress shadow, defined as the fraction of realizations of stress change fit to the observations (red dashed curve). Squares and stars show times of M=4.5 and M=5 aftershocks in the whole study area, DAl
calculations that result in Coulomb stress change ACS<0. Mainshock source models are take from the SRCMOD Earthquake Source Model Database respectively. (d—f) Cumulative number of aftershocks in stress shadows (blue solid curve) and a constant rate fit to the observations
and literature, M~6 foreshocks included if source models are available, source models indicated by color. Mainshocks modeled as dislocations in an (green dashed line). Insets show the first 90 days, the time period shown in Figure 4. Note that the axis limits change between panels. Fiaure 8. Dvnamic stress metrics at the locations of shadow aftershocks. combaring dvnamic str oiected on the aftershock focal
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multiple realizations sample their observed variation. Machine learning focal mechanism catalogs for Ridgecrest from Cheng et al. (JGR, 2023) and for mechanisms with dynamic Stress projected on the background fault planes. Results scatier around the 1-10-11ine, except that Loulom

Kumamoto from Uchide (GJI, 2020). Coefficient of friction u sampled between 0.2 and 0.8. probability ACS>0 for aftershock FM probability ACS>0 for aftershock FM stress change at Kumamoto is slightly smaller on aftershock planes compared to background planes.



