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1. How does circulation change under contrasting SST warming patterns?

* Recentwork has shown the importance of the geographic location of SST warming on cloud
feedbacks and thus climate sensitivity estimates [1-4].

* Climatological circulation is key to the mechanism of the ‘pattern effect’: but how does
atmospheric circulation itself respond to patterned warming? And how is this linked to the
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2. Estimating ascent fraction with a moist static energy (MSE) framework
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T: temperature
g: specific humidity
z: height

1. What proportion of gridboxes have a sufficiently high
surface MSE (h.) to overcome the saturation MSE in the free

Moist static energy: h = ¢,T + L,q + gz
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What drives differing responses? Turn to a moist static
energy framework to interpret

Figure 1: location of patches (a, from [4]), bulk circulation response to
warming at 140E (b) and 220E (c)

and entrainment-adjusted index (b) for the sample month of January.

3. Using instability space to interpret contrasting responses to patch warming Instability probability density function of the patch -

are warmed/cooled points ascending or descending?
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Direct link between ascent fraction
change and ACRE_,
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Integrating over each quadrant gives the
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