Circulation and cloud responses to patterned SST warming Anna Mackie¹, Michael P. Byrne¹, Emily van de Koot², Andrew I.N. Williams³ ¹University of St Andrews, ²University of Oxford, ³ Princeton University

1. How does circulation change under contrasting SST warming patterns? Recent work has shown the importance of the geographic location of SST warming on cloud feedbacks and thus climate sensitivity estimates [1-4]. Climatological circulation is key to the mechanism of the 'pattern effect': **but how does** atmospheric circulation itself respond to patterned warming? And how is this linked to the cloud response? Warm, moist air lofted **SST** warming in to free-troposphere convective regions Warming 'trapped' by SST warming in temperature inversion; subsiding regions No remote effects $h_0 - h_{500}^*$ in control run Simulations: 140E 180E • 220E 5 40.0 1 2 3 4 -4 -3 -2 -1 patch SST increase (K) patch SST increase (K) Figure 1: location of patches (a, from [4]), bulk circulation response to warming at 140E (b) and 220E (c) **3. Using instability space to interpret contrasting responses to patch warming**

What on earth is this?!

- Discretize gridpoints
 - by control simulation instability (x-axis)
 - by perturbed instability (y-axis)
- **1:1 line** (dotted):
- below = gridpoints more stable with warming
- above = gridpoints less stable with warming
- **Colour scale :** ΔCRE_{net} of gridpoints in that discretized 'bin'
- **Bottom–left quadrant : 'down, down'** subsiding in both control and perturbation
- **Top-right quadrant: 'up, up'** ascending in both control and perturbation
- **Top-left quadrant: 'down, up'** move from subsiding to ascending with warming
- **Bottom-right quadrant: 'up, down'** move from ascending to subsiding with warming

Integrating over each quadrant gives the contribution to the total change in ΔCRE_{net} , which changes with warming/cooling

References:

 \cup

[3] Rugenstein et al., (2023), EOS, 104, https://doi.org/10.1029/2023EO23041 [4] Williams et al., (2023), Geophys, Res. Lett., 50, https://doi.org/10.1029/2022GL101499

