Determination of realistic uplift rate and noise assessment
using GNSS coordinate time series
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Table description:
= Time-Span: yrs
= White: (mm)?.day
= Flicker: (mm)?
= Random-Walk:(mm)?/day

Total period [yrs]

Table statistics:

= F: 4 parts

= W+F+RW: 6 parts
= F+RW: 1 part
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frame (Altamimi et al. 2016) is accessible via the link:

http://geodesy.unr.edu/gps timeseries/.
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