Ground-based thermal mapping of Venus: HDO & SO₂ monitoring and upper limits of PH₃, NH₃ and HCN at the cloud top

T. Encrenaz¹, T.K. Greathouse², R. Giles², T. Widemann¹, B. Bézard¹, F. Lefèvre³, M. Lefèvre⁴, W. Shao⁵ H. Sagawa⁶, E. Marcq³, A. Arredondo²

¹ LESIA, Paris Observatory-PSL, France
² SwRI, San Antonio, TX, USA
³ LATMOS/IPSL, UVSQ, France
⁴ LMD/IPSL/Sorbonne Université, Paris
⁵ DTU, Denmark
⁶ Kyoto-Sanyo University, Kyoto, Japan

EGU Conference, Vienna, Austria April 15 – 20, 2024

TEXES @ IRTF, Mauna Kea Observatory, Hawaii

TEXAS Echelon Cross Echelle Spectrograph 5 – 25 μ m, R = 8 10⁴ @ 7 μ m Main question: To understand the SO₂ & H₂O cycles above and within the clouds

Observing program: Mapping of SO₂ (at 7 and 19 μm) and H₂O (through HDO) at 7 μm

- Cloud top probed at 7 μm (z = 62 km, T = 235 K, P = 150 mbar)
- Within the cloud at 19 μm (z = 57 km, T = 241 K, P = 250 mbar)
- Above the clouds at 8.6 μm (z=67 km)
- 12 campaigns between January 2012 and April 2019; 11 campaigns since 2021: June, Sept. & Nov. 2021, Feb. & June 2022, March, July, Oct. & Dec. 2023, Feb. 2024

Where does the radiation come from?

SO₂ & HDO maps exhibit a different behavior

The SO₂ plume follows the 4-day rotation of the clouds at the cloud top over a time scale of a few hours

January 21, 2017

SO₂ maps are very inhomogeneous over the disk HDO maps are uniform over the disk and show strong variations with time and +/- constant over time

Long-term variations of H_2O and SO_2 at the cloud top (z = 62 km)

Long-term SO_2 variations at the cloud top (z = 62 km) and within the cloud (z = 57 km)

SO₂ vmr (ppbv)

First detection of SO₂ in the v_1 SO₂ band at 1160 cm⁻¹ (8.6 μ m) October 3, 2023

Detection of SO₂ at 67 km on Oct. 3, 2023

October 3, 2023: $SO_2(67 \text{km})/SO_2(62 \text{km}) = 20$

Upper limits of minor species at the cloud top of Venus

- Attempts to detect minor species in Venus have been reported in the literature :
 - PH₃: detection, up to 20 ppbv (Greaves et al. 2020, +)
 - HCN: upper limit, 38.3 +/- 7.9 ppmv @ 80 km (Mahieux et al. 2023)
 - NH₃: upper limit, 0.69 +/- 0.28 ppmv @ 80 km (Mahieux et al. 2023)
- New upper limits have been obtained with TEXES (present work):
 - PH₃: **1 ppbv** (σ) at the cloud top (62 km)
 - NH₃: **0.1 ppbv** (σ) at the cloud top (62 km)
 - HCN: **0.1 ppbv** (σ) at the cloud top (62 km)

PH₃ upper limit at the cloud top

Data: TEXES, July 16, 2023

Upper limit: $PH_3 < 3 \text{ ppbv } (3\sigma)$

Confirms our earlier analysis: PH3 < 5 ppbv (3σ) (Encrenaz et al. A&A 643, L5 (2020)

Normalized radiance

NH₃ upper limit at the cloud top

HCN upper limit at the cloud top

Conclusions

- Since 2012, SO₂ has been mapped over the Venus disk and monitored at z = 62 km (cloud top, 7.4 μ m) and 57 km (19 μ m); it was searched for without success at 67 km (8.6 μ m) until 2023.
- H_2O (using HDO as a proxy) was simultaneously mapped and monitored at the cloud top (7.4 μ m).
- H₂O & SO₂ exhibit different behaviors at the cloud top of Venus:
 - H₂O is uniform over the disk and shows moderate temporal variations.
 - SO₂ shows strong spatial and temporal variations in the form of transient plumes and strong long-term variations .
- The long-term variations of H₂O and SO₂ were clearly anti-correlated between 2012 and 2019, but not before nor after.
 - The anticorrelation might be the result of photochemical processes, while convection might favor the mixing of the two species. The lack of anticorrelation after 2019 might indicate a change of regime within or below the clouds.

• Main results:

- **SO₂ is detected for the first time on Oct.3, 2023;** SO₂(67km)/SO₂(62km) = 1/20 (< 1/50 on 14/07/ 2023)
- Stringent upper limits are obtained for PH₃, NH₃ and HCN at the cloud top:
 - $PH_3 < 1 \text{ ppbv (1}\sigma)$, $NH_3 < 0.1 \text{ ppbv (1}\sigma)$, $HCN < 0.1 \text{ ppbv (1}\sigma)$