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Due to SIA

Taiwan is built by the collision of 
Eurasian and Philippine Sea 
plates. The ongoing orogeny 
gives rise to numerous active 
faults, with some playing a role 
in uplifting certain coastlines in 
this region. Additionally, due to 
the combined effects of rapid 
deformation rates and high 
precipitation, this island and its 
surrounding offshore areas have 
experienced one of the fastest 
erosion and deposition on Earth.  

Introduction and MotivationIntroduction and Motivation Study AreaStudy Area

Main ObjectiveMain Objective

Isostatic
Subsidence
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Isostatic
Uplift
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Paleo-Sea Level
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ΔRtot ΔRtot = = 
ΔRtecΔRtec

ΔRΔR
++

ΔRtecΔRtec

ΔRΔR
--= = ΔRtot ΔRtot ΔRtot ΔRtot 

(Shyu et al., 2005)

> How would SIA affect the sea-level  
 along different coast of Taiwan?
> How much and how fast is the effects 
 of SIA  on the sea-level?
> Re-examine tectonic coastal uplift rates

SIA is ...
the isostatic uplift resulting from erosion, 
which would cause sea-level fall; and 
the isostatic subsidence arising from 
deposition, which leads to sea-level rise.
The impact of SIA on sea-level could be 
particularly substantial in Taiwan due to the 
rapid erosion and deposition in this region.

SIA is important since...
in the case where the coast has been 
isostatically uplifted, the actual tectonic 
uplift (ΔRtec) would be overestimated to be 
ΔRtot when not accounting for SIA effect 
(ΔR). Conversely, in instances where the 
coast has undergone isostatic 
subsidence, tectonic uplift would be 
underestimated. Therefore, in Taiwan, the 
traditional way of using a mean sea-level 
curve for each coast to calculate coastal 
tectonic uplift rates without consideration 
of SIA will result in inaccurate estimations.

Eurasian
Plate

(Google Maps)

TAIWAN

Modeling timescale: 122 - 0 ka (last glacial-interglacial cycle)

De�nition of parametersSea-level modeling
MethodMethod

R

G

Hice

water

sediment

I ice thickness

crustal (bedrock) elevation

sea surface
equipotential

sediment
thickness
sediment
thickness

SL > 0 SL < 0SL < 0

SL = G  –  ( R + I + H )
Sea Level (globally defined!)

Change of Sea Level

ΔSL = ΔG  –  ( ΔR + ΔI + ΔH )
At Taiwan’s coast this can be simplified as

ΔSLGR   = ΔG  –  ΔR
isostatic upliftsea-level fall

(Modified from Dalca et al., 2013)

Load model:
Sediment transfer model

Outputs

Response model:
Earth model

10 and 30 km thick elastic lithosphere
(LT10 and LT30)

Load model:
Ice model

ICE-5G (Peltier et al., 2004)

Crustal deformation
(isostatic uplift or 

subsidence amount)

Change of
sea surface equipotential

Sea-level change and
relative sea-level history

GIA model
Solving sea-level equation

Inputs

ΔR

ΔG

ΔSLΔH

ΔI

Erosion rates (ER)

Deposition rates (DR)

Time-variant
scenario

Data collection

> 133 AFT ages with corresponding
    geothermal gradient

> 103 marine cores with 169 ages
> 2 isopach maps from seismic profiles

Rapid sediment redistribution!
with erosion rates up to 7 mm/yr
and deposition rates up to 18 mm/yr

To illustrate different deposition scenario during highstands and lowstand, we designed a time-variant sediment transfer model. First, we identified two events that mark 
changes in deposition rates: the sequence boundary of post-LGM sediment on the coastal plain (~15 kyr) and the submersion of Taiwan Strait, the continental shelf (~14 kyr).  
Then, by correlating these two events to last interglacial period, the interested 122 kyr can be divided into five time intervals: two highstands, two transition phases, and the 
lowstand (Fig. A). Finally, we assigned the sediment originally deposited on Taiwan Strait to be transferred to the deeper southwestern offshore and Okinawa Trough during 
transition phases (Fig. C). During the lowstand, deposition on the Coastal Plain was much slower and more sediment is deposited in the two deep offshore area (Fig. D).
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Erosion rates data

On-land cores
Marine cores
Seismic profiles

Deposition rates data

> 54 basin averaged erosion rates
    with sub-basin analysis

 ERsub×Asub 

    = ERdown×Adown

 –Σ(ERup×Aup)  

Up 2

Down

Up 1

Sub-basin

ER = 
(Tempc – Tempsurf)

AFT age × Geothermal gradient

> 189 on-land cores with 866 ages

(Liu et al., 2008)
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(A)

From the sea-level modeling results, we found
1. Completely different isostatic pattern within short distance (Fig. a, b, d, e): 
 isostatic uplift induces SL fall at NW, NE, and eastern coast near the eroding mountain (Fig. j, k, l, n),
 isostatic subsidence causes SL rise at Penghu, SW coast, and Hengchun near the depositing areas (Fig. m, o, p). 
2. SIA significantly affects the sea-level of Taiwan’s coast (Fig. a, d), 
 much more than the global ice volume change does (Fig. g).
3. Sea-level may have changed >200 m in 122 kyr due to SIA along eastern coast (Fig. a, n).  
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Cumulative changes of sea-level since 122 ka Relative sea-level curves at di�erent coasts
Modeling ResultsModeling Results
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By comparing modeled RSL curves with the dated paleo-sea-level markers, we found
1. in tectonic stable area, a better match after considering SIA (Fig. II).
2. in tectonic active area, after considering SIA, the tectonic uplift rates may have to 
 be revised upward or downward by up to 90% or more (Fig. III-VII).

Compare to observed sea-level records
DiscussionDiscussion

Re-examination of tectonic coastal uplift rates
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Erosion rates –
Cosmogenic nuclides & DZFT

54 data from 5 papers
(Chen et al., 2020
Chen et al., 2021

Derrieux et al., 2014
Fellin et al., 2017

Siame et al., 2011)

Erosion rates range from 

0.05 – 6.96 mm/yr

Sediment model
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228 data from 20 sources

133 fully reset AFT ages

(Chen et al., 2019; Fuller et al., 2006;
Lee et al., 2006; Liu, 1982; Liu et al.,
2000; Liu et al., 2001; Lock, 2007;
Simoes et al., 2012; Shen et al., 2020;
Willet et al., 2003;
王信雄（2011）；吳承穎（2008）；
李定原（2004）；沈姿岑（2019）；
杲紹伊（2020）；林易賢（2011）；
涂欣玫（2011）；梁嘉宏（2011）；
劉聰桂（1982）；賴斾綺（2011）)

Erosion rates –
Apatite fission track

Sediment modelGeothermal gradient map 
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Sediment Flux Calculation

Area
Erosion 

flux
(Mt/yr)

Coastal Plain
deposition flux

（Mt/yr）

Offshore area
deposition flux

（Mt/yr）

Rescale
Factor

I 58.0 31.2 31.4 0.85

II 29.7 18.9 19.7 0.54

III 8.5 3.2 11.1 0.47

IV 8.5 / 𝐷𝑅 =
𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝑓𝑙𝑢𝑥
𝐵𝑎𝑠𝑖𝑛 𝑎𝑟𝑒𝑎

= 2.70 𝑚𝑚/𝑦𝑟

V 66.8 / 10.2 6.53

VI 3.6 / 𝐷𝑅 =
𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝑓𝑙𝑢𝑥
𝐵𝑎𝑠𝑖𝑛 𝑎𝑟𝑒𝑎

= 2.66 𝑚𝑚/𝑦𝑟

58 ≠           31.2             + 31.4

Sediment model

改圖！

58 =           31.2             + (         31.4            × 0.85 )Erosion flux = Plain depo. flux + (Offshore depo. flux × Factor)
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Spatial Coverage of Sediment Transfer Model Sediment model

Theoretical erosion and 
deposition areas 

Actual spatial coverage of 
erosion and deposition areas 

Theoretically, all mountain areas
would be erosional, while all plain
and marine areas would be
depositional. However, there are a
series of lateritic terraces on the
edge of the mountains, with ages
ranging from tens to hundreds of
thousands of years and well-
preserved originally depositional
landforms. This indicates that only
little erosion have occurred in these
areas and thus minimal contributions
to isostatic adjustment. Therefore,
the erosion in these areas is ignored
in this study. As for the offshore
areas, we consider the
sedimentation of Taiwan Strait and
few major basins where sediment
from Taiwan is primarily deposited.
Other offshore areas are mostly
relatively high in bathymetry with
low sedimentation rates, and are
therefore also ignored.
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∆𝑺𝑳𝑮𝑹 = −∆𝑹 + ∆𝑮

Modeling results – Cumulative changes over past 122 kyr

30 km LT

10 km LT

Only Ice

Input models
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Modeling results –

RSL curves at 

different coasts
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Discussion – Compare to Observed SL Records
Tectonic Stable Area

Better matching after considering SIA!
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Discussion – Compare to Observed SL RecordsDiscussion – Compare to Observed SL Records
Tectonic Active Area


