

Root Dynamics Under Elevated CO₂ in a Free Air Carbon Enrichment (FACE) Experiment

Environment **Research Counci**

WOODLAND TRUST

Grace Handy^{1,2}, Imogen Carter^{1,2}, Rob Mackenzie^{1,2}, Adriane Esquivel-Mulebert^{1,2}, Marie Arnaud^{1,3}, Angeliki Kourmouli^{1,4}, Matthew Wilikinson⁵ and Carolina Mayoral^{1,2}

Research Questions

How does eCO₂ impact fine root biomass in a mature, deciduous forest?

How does eCO₂ impact **fine**

root carbon content in a

mature, deciduous forest?

How does eCO₂ impact **fine** root morphology (length, diameter and SRL) in a mature, deciduous forest?

How does eCO₂ impact **fine** root depth distribution in a mature, deciduous forest?

Background

Increasing levels of atmospheric CO₂ results in **photosynthetic** enhancement and increased carbon (C) sequestration in many tree species. However, it remains largely unclear if, where, and for how long, this C is stored as biomass within living vegetation in forests.

Fine roots make up only <5% of combined forest biomass yet are said to represent ~1/3 of global NPP. Understanding the impact of elevated carbon dioxide (eCO₂) on fine roots is vital for improving the accuracy of couple biosphere-atmosphere models and the comprehensive understanding of **future global** C budgets.

To sustain photosynthetic enhancement, trees are likely to require higher intake of nutrients from the soil. Therefore, eCO₂ is hypothesized to stimulate increased fine root **biomass**, a **deeper fine root depth distribution** (to avoid high levels of competition in the surface layers) and an increased specific root length (SRL) (the length-to- mass ratio of a root).

Free Air Carbon Enrichment (FACE) experiments are valuable in understanding full ecosystem responses to eCO₂ but have consistently been applied to young aggrading forests and plantations. This study is carried out at **BIFoR FACE**, the only FACE experiment globally in a native, mature, deciduous forest. Here, patches of the forest are fertilised with levels of CO_2 predicted to be the 2050 atmospheric norm (+550ppm).

Fig 1: The Birmingham Institute of Forest Research FACE (BIFoR FACE) experiment from above (Image source: RIBA Journal)

² School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, UK ³ Institute of Ecology and Environmental Sciences Paris (iEES-PARIS), Sarbonne University, Paris, France

⁴ Lancaster Environment Centre, Lancaster University, Lancaster, UK ⁵ Forest Research, Alice Holt Lodge, Farnham, UK

Unfortunately, I could not make it to EGU this year but please get in touch!

(3

gih849@student.bham.ac.uk @gracehandyPGR

No significant difference in fine root carbon content between aCO₂ and eCO₂ at any depth in 2021 or 2023

	Carbon Content (g/g root)						
5	20	202					
Depth	aCO ₂	eCO ₂	aCO ₂	e			
0	0.49 ± 0.002	0.49 ± 0.015	0.51 ± 0.005	0			
Α	0.49 ± 0.011	0.49 ± 0.009	0.51 ± 0.005	0			
В	0.49 ± 0.006	0.5 ± 0.009	0.51 ± 0.007	0			
30-50	0.49 ± 0.006	0.51 ± 0.010	0.49 ± 0.003	0			
50-70	0.48 ± 0.005	0.49 ± 0.014	0.5 ± 0.007	0			
>70	0.52 ± 0.016	0.49 ± 0.012	0.5 ± 0.004	0			

The fine root depth distribution is not deeper under eCO₂

Average Diameter (mm)			Average SRL (m g ⁻¹)		
	eCO ₂	E/A Ratio	aCO ₂	eCO ₂	E/A Ratio
).39 ± 0.01	0.4 ± 0.01	1 ± 0.03	42.4 ± 1.8	38.3 ± 2	0.9 ± 0.06
).41 ± 0.02	0.42 ± 0.01	1 ± 0.06	27.1 ± 2	27.9 ± 1.9	1 ± 0.1
0.42 ± 0.02	0.43 ± 0.01	1 ± 0.06	22.8 ± 1.7	25.5 ± 2.5	1.1 ± 0.1
).41 ± 0.01	0.39 ± 0.03	0.9 ± 0.07	29.6 ± 2.8	33.9 ± 2.6	1.1 ± 0.1
).33 ± 0.04	0.35 ± 0.04	1.1 ± 0.18	28.4 ± 3.6	35.5 ± 5.2	1.3 ± 0.2
0.27 ± 0.05	0.28 ± 0.05	0.9 ± 0.23	22.9 ± 2.8	28.2 ± 6.4	1.2 ± 0.1

Fig 4: Cumulative root fraction as a function of soil .The data points represent the real cumulative root fraction values and the curves represent the least squares fit of β using the Gale and Grigal (1987) asymptotic equation Y = 1- β^d , where d = depth and Y = the proportion of roots from the surface to depth. Higher values of β correspond to a higher proportion of roots with depth.

in August and October 2022

SCIENCE**POSTERS**

