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An eddying ocean |- =

-~ ‘M |n the ocean interior:
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* Eddies dominate the variability almost everywhere 1]

 Particular sources of variability hard to disentangle from the
eddy field

* Non-linear eddy interactions mediate currents on a timescale
beyond the lifetime of a single eddy 2!

0 ’:i\

Ocean ’tdrbuléhbe (2km resolution) Su et al. (2018

N i




,\.‘.\.

LI

Ocean ’tﬁrbulénce (2km re olutio




—C

iy
=

= &/ Boundary pressures:

& ."

 Can describe global currents such as the AMOC B!

* Interannual to decadal variability is coherent over long
distances (~10° km) B

* Boundary and equatorial waves provide high-speed pathways
(~1 m s1) to connect the basins on a timescale < 1 year [3:4]
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Boundary Pressure Structure
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Boundary Pressure Structure
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Adjoint models

* Adjoint models effectively run “backwards”

* Relate ocean behaviors to physical causes in the past via
automatic differentiation

* |dentify the linear sensitivities of an objective function
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Objective function . cre tes
e.g. Mean pressure Linear sensitivities
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two regions F;, as a function of space and time




Results — North Atlantic Example

J=F,—FPg

P,,: Mean pressure on western
boundary at depths between

300 and 400 m (1 year
average)

Pr: Equivalent eastern
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Results — North Atlantic Example

J=F,—FPg

The figure on the right
shows the spatial
sensitivity to zonal winds

Leading-order sensitivity is
confined to the boundaries
and equator

Also the case for
meridional winds

Sensitivity of (J to zonal wind stress
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[Mm2s2]/[N m]

Snapshot of sensitivity when spatial pattern is most intense
(minus 1 year)



Results — North Atlantic Example

J=F,—FPg

The figure on the right
shows the spatial
sensitivity to zonal winds

Leading-order sensitivity is
confined to the boundaries
and equator

Also the case for
meridional winds

Sensitivity of (7 to meridional wind stress
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Snapshot of sensitivity when spatial pattern is most intense
(minus 1 year)
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Future work

* Longer adjoint experiments to explore sensitivities further into
the past:
* Buoyancy forcing becomes increasing relevant
* Potential to reveal sensitivity hotspots away from the boundaries

* A robust method of selecting cluster pairs

* Forward perturbation experiments to reveal physical
mechanisms
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