Ocean boundary pressures: Its significance and sensitivities

OceanBound

Andrew Styles¹, Emma Boland¹, Chris Hughes²

¹ British Antarctic Survey, UK

² University of Liverpool, UK

15th April 2024

An eddying ocean

Ocean turbulence (2km resolution) Su et al. (2018)

0

An eddying ocean

In the ocean interior:

- Eddies dominate the variability almost everywhere [1]
- Particular sources of variability hard to disentangle from the eddy field
- Non-linear eddy interactions mediate currents on a timescale beyond the lifetime of a single eddy ^[2]

Another approach?

Ocean turbulence (2km resolution) Su et al. (2018)

Another approach?

Boundary pressures:

- Can describe **global currents** such as the AMOC ^[3]
- Interannual to decadal variability is coherent over long distances (~10⁵ km) ^[3]
- Boundary and equatorial waves provide high-speed pathways (~1 m s⁻¹) to connect the basins on a timescale < 1 year ^[3,4]

Ocean turbulence (2km resolution) Su et al. (2018)

Boundary Pressure Structure

Adjoint models

- Adjoint models effectively run "backwards"
- Relate **ocean behaviors** to **physical causes** in the past via automatic differentiation
- Identify the linear sensitivities of an objective function

Results – North Atlantic Example

 $\mathcal{J} = P_w - P_E$

P_w: Mean pressure on western boundary at depths between
300 and 400 m (1 year average)

P_E: Equivalent eastern boundary pressure

Objective function, \mathcal{J} , is correlated with transport between grid points (r=0.63) on interannual timescales

Results – North Atlantic Example

$$\mathcal{J} = P_w - P_E$$

The figure on the right shows the **spatial sensitivity** to **zonal winds**

Leading-order sensitivity is confined to the **boundaries** and **equator**

Also the case for **meridional winds**

Sensitivity of ${\mathcal J}$ to **zonal** wind stress

Snapshot of sensitivity when spatial pattern is most intense (minus 1 year)

Results – North Atlantic Example

$$\mathcal{J} = P_w - P_E$$

The figure on the right shows the **spatial sensitivity** to **zonal winds**

Leading-order sensitivity is confined to the **boundaries** and **equator**

Also the case for **meridional winds**

Sensitivity of ${\mathcal J}$ to **meridional** wind stress

Snapshot of sensitivity when spatial pattern is most intense (minus 1 year)

Future work

- Longer adjoint experiments to explore sensitivities further into the past:
 - Buoyancy forcing becomes increasing relevant
 - Potential to reveal sensitivity hotspots away from the boundaries
- A robust method of selecting cluster pairs
- Forward perturbation experiments to reveal physical mechanisms

Thank you for listening

Scan for abstract and slides

Oral | Tuesday, 16 Apr, 14:50–15:00 (CEST) Room L3

Remote influence of (or on?) the Atlantic Meridional Overturning Circulation: A boundary pressure perspective.

Chris Hughes^{[0],2} and Saranraj Gururaj¹ ¹University of Liverpool, School of Environmental Sciences, Earth, Ocean and Ecological Sciences, Liverpool, UK ²National Oceanography Centre, Liverpool, UK

Follow me on Twitter!

@AndrewFStyles

References

[1] Wunsch, C. (2008). Mass and volume transport variability in an eddy-filled ocean. *Nature Geoscience*, *1*(3), 165–168. <u>https://doi.org/10.1038/ngeo126</u>

[2] Close, S., Penduff, T., Speich, S., & Molines, J.-M. (2020). A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations. *Progress in Oceanography*, *184*, 102314. <u>https://doi.org/10.1016/j.pocean.2020.102314</u>

[3] Hughes, C. W., Williams, J., Blaker, A., Coward, A., & Stepanov, V. (2018). A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation. *Progress in Oceanography*, *161*, 19–46. <u>https://doi.org/10.1016/j.pocean.2018.01.011</u>

[4] Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S., Spence, P., Thompson, K. R., & Wise, A. (2019). Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast. *Surveys in Geophysics*, *40*(6), 1467–1492. https://doi.org/10.1007/s10712-019-09535-x

Boundary wave direction

Ocean turbulence (2km resolution) Su et al. (2018)