

RUHR-UNIVERSITÄT BOCHUM

COMBINING CROWDSOURCED WEATHER DATA AND THE NUMERICAL URBAN CLIMATE MODEL PALM – POTENTIALS AND LIMITATIONS

Lara van der Linden^{1,2}, Patrick Hogan², Björn Maronga³, Rowell Hagemann² and Benjamin Bechtel¹

¹ Bochum Urban Climate Lab, Institute of Geography, Ruhr-University Bochum, Bochum, Germany

² Lohmeyer GmbH, Bochum, Germany

³ Institute of Meteorology and Climatology, Leibniz University Hannover, Hannover, Germany

Motivation

Fig. 1: Examples of climate sensitive buillings (Oke et al. 2017)

Climate adaptation in urban areas

Detailed information on microscale thermal conditions

Numerical urban climate modelling

Model evaluation?

Fig. 2: Logo of the PALM model and PALM-4U model components (Leibniz-Universität Hannover)

Methods

- Study area: Bochum
- Study period: hot episode in August 2020 (T_{max} = 36 °C)
- Quality controlled, crowdsourced air temperature data for evaluation
- PALM model system
 - Atmospheric boundary conditions from COSMO-D2
 - Offline & online nesting
 - PALM-4U modules

Fig. 3: Surface description and building positions as input for the PALM simulation

Results

Model results

- Clear daily cycle
- **Expected maximum air** temperatures reached
- Temporal pattern in urban rural air temperature differences
 - "Rural reference": Local Climate Zone D (low plants)

Fig. 4: PALM urban rural air temperature differences [K] at four selected timesteps

Results

Evaluation

Parent domain

Pearson r: 0.93

R2: 0.88

• RMSE: 1.89

Child domain

Pearson r: 0.93

R²: 0.86

RMSE: 1.98

Fig. 5: Boxplot timeseries of the PALM 2 m air temperature [°C] and Netatmo air temperature [°C] for parent and child domain

Discussion

Potentials

- Statistical values indicate high agreement
- High spatial resolution
- Same type of station
- Placement within urban areas:
 representation of thermal conditions in
 different urban environments

Limitations

- Low data quality and remaining radiation errors
- Uncertainty of exact location of each station
- Influenced by micro and local scale phenomena
- Low number of stations in child domains

Outlook & further information

- Application to different cities
- Further investigation into causes for differences between modelled and measured data
- Compare evaluation with crowdsourced data to evaluation with professional data or data from measurement campaign

Further information:

van der Linden L, Hogan P, Maronga B, Hagemann R, Bechtel B (2023): Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM—A case study in central Europe. PLOS Clim 2(8): e0000197. https://doi.org/10.1371/journal.pclm.0000197

